58 research outputs found

    TOSC: an algorithm for the tomography of spotted transit chords

    Get PDF
    Photometric observations of planetary transits may show localized bumps, called transit anomalies, due to the possible crossing of photospheric starspots. The aim of this work is to analyze the transit anomalies and derive the temperature profile inside the transit belt along the transit direction. We develop the algorithm TOSC, a tomographic inverse-approach tool which, by means of simple algebra, reconstructs the flux distribution along the transit belt. We test TOSC against some simulated scenarios. We find that TOSC provides robust results for light curves with photometric accuracies better than 1~mmag, returning the spot-photosphere temperature contrast with an accuracy better than 100~K. TOSC is also robust against the presence of unocculted spots, provided that the apparent planetary radius given by the fit of the transit light curve is used in place of the true radius. The analysis of real data with TOSC returns results consistent with previous studies

    VizieR Online Data Catalog: BR light curves of GJ1214b (Nascimbeni+, 2015)

    Get PDF
    We observed two complete transits of GJ1214b during the nights of March 29 and May 17, 2012 with the LBC camera mounted at the double 8.4m Large Binocular Telescope (LBT). We mounted a Bessel B and Bessel R filter on the blue and red channel, respectively. (4 data files)

    Development and Implementation of the AIDA International Registry for Patients with Non-Infectious Scleritis

    Get PDF
    Introduction This article points out the design, methods, development and deployment of the international registry promoted by the AutoInflammatory Disease Alliance (AIDA) Network with the aim to define and assess paediatric and adult patients with immune-mediated scleritis. Methods This registry collects both retrospective and prospective real-world data from patients with non-infectious scleritis through the Research Electronic Data Capture (REDCap) tool and aims to promote knowledge and real-life evidence from patients enrolled worldwide; the registry also allows the collection of standardised data, ensuring the highest levels of security and anonymity of patients' data and flexibility to change according to scientific acquisitions over time. The communication with other similar registries has been also ensured in order to pursue the sustainability of the project with respect to the adaptation of collected data to the most diverse research projects. Results Since the launch of the registry, 99 centres have been involved from 20 countries and four continents. Forty-eight of the centres have already obtained a formal approval from their local ethics committees. At present, the platform counts 259 users (95 principal investigators, 160 site investigators, 2 lead investigators, and 2 data managers); the platform collects baseline and follow-up data using 3683 fields organised into 13 instruments, including patient's demographics, history, symptoms, trigger or risk factors, therapies and healthcare utilization. Conclusions The development of the AIDA International Registry for patients with non-infectious scleritis will allow solid research on this rare condition. Real-world evidence resulting from standardised real-life data will lead to the optimisation of routine clinical and therapeutic management, which are currently limited by the rarity of this ocular inflammatory condition

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Five carbon- and nitrogen-bearing species in a hot giant planet's atmosphere

    Get PDF
    The atmospheres of gaseous giant exoplanets orbiting close to their parent stars (hot Jupiters) have been probed for nearly two decades. They allow us to investigate the chemical and physical properties of planetary atmospheres under extreme irradiation conditions. Previous observations of hot Jupiters as they transit in front of their host stars have revealed the frequent presence of water vapour and carbon monoxide in their atmospheres; this has been studied in terms of scaled solar composition under the usual assumption of chemical equilibrium. Both molecules as well as hydrogen cyanide were found in the atmosphere of HD 209458b, a well studied hot Jupiter (with equilibrium temperature around 1,500 kelvin), whereas ammonia was tentatively detected there and subsequently refuted. Here we report observations of HD 209458b that indicate the presence of water (H2O), carbon monoxide (CO), hydrogen cyanide (HCN), methane (CH4), ammonia (NH3) and acetylene (C2H2), with statistical significance of 5.3 to 9.9 standard deviations per molecule. Atmospheric models in radiative and chemical equilibrium that account for the detected species indicate a carbon-rich chemistry with a carbon-to-oxygen ratio close to or greater than 1, higher than the solar value (0.55). According to existing models relating the atmospheric chemistry to planet formation and migration scenarios, this would suggest that HD 209458b formed far from its present location and subsequently migrated inwards. Other hot Jupiters may also show a richer chemistry than has been previously found, which would bring into question the frequently made assumption that they have solar-like and oxygen-rich compositions.Comment: As part of the Springer Nature Content Sharing Initiative, it is possible to access a view-only version of this paper by using the following SharedIt link: https://rdcu.be/cifr

    Twelve Variants Polygenic Score for Low-Density Lipoprotein Cholesterol Distribution in a Large Cohort of Patients With Clinically Diagnosed Familial Hypercholesterolemia With or Without Causative Mutations

    Get PDF
    : Background A significant proportion of individuals clinically diagnosed with familial hypercholesterolemia (FH), but without any disease-causing mutation, are likely to have polygenic hypercholesterolemia. We evaluated the distribution of a polygenic risk score, consisting of 12 low-density lipoprotein cholesterol (LDL-C)-raising variants (polygenic LDL-C risk score), in subjects with a clinical diagnosis of FH. Methods and Results Within the Lipid Transport Disorders Italian Genetic Network (LIPIGEN) study, 875 patients who were FH-mutation positive (women, 54.75%; mean age, 42.47±15.00 years) and 644 patients who were FH-mutation negative (women, 54.21%; mean age, 49.73±13.54 years) were evaluated. Patients who were FH-mutation negative had lower mean levels of pretreatment LDL-C than patients who were FH-mutation positive (217.14±55.49 versus 270.52±68.59 mg/dL, P<0.0001). The mean value (±SD) of the polygenic LDL-C risk score was 1.00 (±0.18) in patients who were FH-mutation negative and 0.94 (±0.20) in patients who were FH-mutation positive (P<0.0001). In the receiver operating characteristic analysis, the area under the curve for recognizing subjects characterized by polygenic hypercholesterolemia was 0.59 (95% CI, 0.56-0.62), with sensitivity and specificity being 78% and 36%, respectively, at 0.905 as a cutoff value. Higher mean polygenic LDL-C risk score levels were observed among patients who were FH-mutation negative having pretreatment LDL-C levels in the range of 150 to 350 mg/dL (150-249 mg/dL: 1.01 versus 0.91, P<0.0001; 250-349 mg/dL: 1.02 versus 0.95, P=0.0001). A positive correlation between polygenic LDL-C risk score and pretreatment LDL-C levels was observed among patients with FH independently of the presence of causative mutations. Conclusions This analysis confirms the role of polymorphisms in modulating LDL-C levels, even in patients with genetically confirmed FH. More data are needed to support the use of the polygenic score in routine clinical practice

    Refinement of the diagnostic approach for the identification of children and adolescents affected by familial hypercholesterolemia: Evidence from the LIPIGEN study

    Get PDF
    Background and aims: We aimed to describe the limitations of familiar hypercholesterolemia (FH) diagnosis in childhood based on the presence of the typical features of FH, such as physical sings of cholesterol accumulation and personal or family history of premature cardiovascular disease or hypercholesterolemia, comparing their prevalence in the adult and paediatric FH population, and to illustrate how additional information can lead to a more effective diagnosis of FH at a younger age.Methods: From the Italian LIPIGEN cohort, we selected 1188 (&gt;= 18 years) and 708 (&lt;18 years) genetically-confirmed heterozygous FH, with no missing personal FH features. The prevalence of personal and familial FH features was compared between the two groups. For a sub-group of the paediatric cohort (N = 374), data about premature coronary heart disease (CHD) in second-degree family members were also included in the evaluation.Results: The lower prevalence of typical FH features in children/adolescents vs adults was confirmed: the prevalence of tendon xanthoma was 2.1% vs 13.1%, and arcus cornealis was present in 1.6% vs 11.2% of the cohorts, respectively. No children presented clinical history of premature CHD or cerebral/peripheral vascular disease compared to 8.8% and 5.6% of adults, respectively. The prevalence of premature CHD in first-degree relatives was significantly higher in adults compared to children/adolescents (38.9% vs 19.7%). In the sub-cohort analysis, a premature CHD event in parents was reported in 63 out of 374 subjects (16.8%), but the percentage increased to 54.0% extending the evaluation also to second-degree relatives.Conclusions: In children, the typical FH features are clearly less informative than in adults. A more thorough data collection, adding information about second-degree relatives, could improve the diagnosis of FH at younger age

    Spectrum of mutations in Italian patients with familial hypercholesterolemia: New results from the LIPIGEN study

    Get PDF
    Background Familial hypercholesterolemia (FH) is an autosomal dominant disease characterized by elevated plasma levels of LDL-cholesterol that confers an increased risk of premature atherosclerotic cardiovascular disease. Early identification and treatment of FH patients can improve prognosis and reduce the burden of cardiovascular mortality. Aim of this study was to perform the mutational analysis of FH patients identified through a collaboration of 20 Lipid Clinics in Italy (LIPIGEN Study). Methods We recruited 1592 individuals with a clinical diagnosis of definite or probable FH according to the Dutch Lipid Clinic Network criteria. We performed a parallel sequencing of the major candidate genes for monogenic hypercholesterolemia (LDLR, APOB, PCSK9, APOE, LDLRAP1, STAP1). Results A total of 213 variants were detected in 1076 subjects. About 90% of them had a pathogenic or likely pathogenic variants. More than 94% of patients carried pathogenic variants in LDLR gene, 27 of which were novel. Pathogenic variants in APOB and PCSK9 were exceedingly rare. We found 4 true homozygotes and 5 putative compound heterozygotes for pathogenic variants in LDLR gene, as well as 5 double heterozygotes for LDLR/APOB pathogenic variants. Two patients were homozygous for pathogenic variants in LDLRAP1 gene resulting in autosomal recessive hypercholesterolemia. One patient was found to be heterozygous for the ApoE variant p.(Leu167del), known to confer an FH phenotype. Conclusions This study shows the molecular characteristics of the FH patients identified in Italy over the last two years. Full phenotypic characterization of these patients and cascade screening of family members is now in progress

    Lipoprotein(a) Genotype Influences the Clinical Diagnosis of Familial Hypercholesterolemia

    Get PDF
    : Background Evidence suggests that LPA risk genotypes are a possible contributor to the clinical diagnosis of familial hypercholesterolemia (FH). This study aimed at determining the prevalence of LPA risk variants in adult individuals with FH enrolled in the Italian LIPIGEN (Lipid Transport Disorders Italian Genetic Network) study, with (FH/M+) or without (FH/M-) a causative genetic variant. Methods and Results An lp(a) [lipoprotein(a)] genetic score was calculated by summing the number risk-increasing alleles inherited at rs3798220 and rs10455872 variants. Overall, in the 4.6% of 1695 patients with clinically diagnosed FH, the phenotype was not explained by a monogenic or polygenic cause but by genotype associated with high lp(a) levels. Among 765 subjects with FH/M- and 930 subjects with FH/M+, 133 (17.4%) and 95 (10.2%) were characterized by 1 copy of either rs10455872 or rs3798220 or 2 copies of either rs10455872 or rs3798220 (lp(a) score ≥1). Subjects with FH/M- also had lower mean levels of pretreatment low-density lipoprotein cholesterol than individuals with FH/M+ (t test for difference in means between FH/M- and FH/M+ groups &lt;0.0001); however, subjects with FH/M- and lp(a) score ≥1 had higher mean (SD) pretreatment low-density lipoprotein cholesterol levels (223.47 [50.40] mg/dL) compared with subjects with FH/M- and lp(a) score=0 (219.38 [54.54] mg/dL for), although not statistically significant. The adjustment of low-density lipoprotein cholesterol levels based on lp(a) concentration reduced from 68% to 42% the proportion of subjects with low-density lipoprotein cholesterol level ≥190 mg/dL (or from 68% to 50%, considering a more conservative formula). Conclusions Our study supports the importance of measuring lp(a) to perform the diagnosis of FH appropriately and to exclude that the observed phenotype is driven by elevated levels of lp(a) before performing the genetic test for FH
    corecore