114 research outputs found

    Improved distance determination to M51 from supernovae 2011dh and 2005cs

    Get PDF
    The appearance of two recent supernovae, SN 2011dh and 2005cs, both in M51, provides an opportunity to derive an improved distance to their host galaxy by combining the observations of both SNe. We apply the Expanding Photosphere Method to get the distance to M51 by fitting the data of these two SNe simultaneously. In order to correct for the effect of flux dilution, we use correction factors (zeta) appropriate for standard type II-P SNe atmospheres for 2005cs, but find zeta ~ 1 for the type IIb SN 2011dh, which may be due to the reduced H-content of its ejecta. The EPM analysis resulted in D_M51 = 8.4 +/- 0.7 Mpc. Based on this improved distance, we also re-analyze the HST observations of the proposed progenitor of SN 2011dh. We confirm that the object detected on the pre-explosion HST-images is unlikely to be a compact stellar cluster. In addition, its derived radius (~ 277$ R_sun) is too large for being the real (exploded) progenitor of SN 2011dh. The supernova-based distance, D = 8.4 Mpc, is in good agreement with other recent distance estimates to M51.Comment: 6 pages, 5 figures, accepted for publication in A&

    Interacting supernovae and supernova impostors. SN 2007sv: the major eruption of a massive star in UGC 5979

    Get PDF
    We report the results of the photometric and spectroscopic monitoring campaign of the transient SN 2007sv. The observables are similar to those of type IIn supernovae, a well-known class of objects whose ejecta interact with pre-existing circum-stellar material. The spectra show a blue continuum at early phases and prominent Balmer lines in emission, however, the absolute magnitude at the discovery of SN 2007sv (M_R = - 14.25 +/- 0.38) indicate it to be most likely a supernova impostor. This classification is also supported by the lack of evidence in the spectra of very high velocity material as expected in supernova ejecta. In addition we find no unequivocal evidence of broad lines of alpha - and/or Fe-peak elements. The comparison with the absolute light curves of other interacting objects (including type IIn supernovae) highlights the overall similarity with the prototypical impostor SN 1997bs. This supports our claim that SN 2007sv was not a genuine supernova, and was instead a supernova impostor, most likely similar to the major eruption of a luminous blue variable.Comment: Accepted for publication in MNRAS. 15 pages, 11 figures, 5 table

    Three-Dimensional Simulations of Mixing Instabilities in Supernova Explosions

    Full text link
    We present the first three-dimensional (3D) simulations of the large-scale mixing that takes place in the shock-heated stellar layers ejected in the explosion of a 15.5 solar-mass blue supergiant star. The outgoing supernova shock is followed from its launch by neutrino heating until it breaks out from the stellar surface more than two hours after the core collapse. Violent convective overturn in the post-shock layer causes the explosion to start with significant asphericity, which triggers the growth of Rayleigh-Taylor (RT) instabilities at the composition interfaces of the exploding star. Deep inward mixing of hydrogen (H) is found as well as fast-moving, metal-rich clumps penetrating with high velocities far into the H-envelope of the star as observed, e.g., in the case of SN 1987A. Also individual clumps containing a sizeable fraction of the ejected iron-group elements (up to several 0.001 solar masses) are obtained in some models. The metal core of the progenitor is partially turned over with Ni-dominated fingers overtaking oxygen-rich bullets and both Ni and O moving well ahead of the material from the carbon layer. Comparing with corresponding 2D (axially symmetric) calculations, we determine the growth of the RT fingers to be faster, the deceleration of the dense metal-carrying clumps in the He and H layers to be reduced, the asymptotic clump velocities in the H-shell to be higher (up to ~4500 km/s for the considered progenitor and an explosion energy of 10^{51} ergs, instead of <2000 km/s in 2D), and the outward radial mixing of heavy elements and inward mixing of hydrogen to be more efficient in 3D than in 2D. We present a simple argument that explains these results as a consequence of the different action of drag forces on moving objects in the two geometries. (abridged)Comment: 15 pages, 8 figures, 30 eps files; significantly extended and more figures added after referee comments; accepted by The Astrophysical Journa

    SPLOT : a Snapshot survey for polarised light in optical transients

    Get PDF
    We present SPLOT, a small scale pilot survey to test the potential of snapshot (single epoch) linear imaging polarimetry as a supplementary tool to traditional transient follow-up. Transients exist in a vast volume of observational parameter space and polarimetry has the potential to highlight sources of scienti c interest and add value to near real-time transient survey streams. We observed a sample of 50 randomly selected optical transients with the EFOSC2 and SofI instruments, on the 3.6m New Technology Telescope (NTT) to test the feasibility of the survey. Our sample contained a number of interesting individual sources: a variety of supernovae, X-ray binaries, a tidal disruption event, blazar outbursts, and, by design, numerous transients of unknown nature. We discuss the results, both for the individual sources and the survey in detail. We provide an overview on the success and limitations of SPLOT and also describe a novel calibration method for removing instrumental polarisation e ects from Nasymth-mounted telescopes. We nd that a SPLOT-like survey would be a bene t to the large scale future transient survey streams such as LSST. The polarimetric measurements have added scienti c value to a signi cant number of the sources and, most importantly, has shown the potential to highlight unclassi ed transient sources of scienti c interest for further study

    The Transitional Stripped-Envelope SN 2008ax: Spectral Evolution and Evidence for Large Asphericity

    Get PDF
    Supernova (SN) 2008ax in NGC 4490 was discovered within hours after shock breakout, presenting the rare opportunity to study a core-collapse SN beginning with the initial envelope-cooling phase immediately following shock breakout. We present an extensive sequence of optical and near-infrared spectra, as well as three epochs of optical spectropolarimetry. Our initial spectra, taken two days after shock breakout, are dominated by hydrogen Balmer lines at high velocity. However, by maximum light, He I lines dominated the optical and near-infrared spectra, which closely resembled those of normal Type Ib supernovae (SNe Ib) such as SN 1999ex. This spectroscopic transition defines Type IIb supernovae, but the strong similarity of SN 2008ax to normal SNe Ib beginning near maximum light, including an absorption feature near 6270A due to H-alpha at high velocities, suggests that many objects classified as SNe Ib in the literature may have ejected similar amounts of hydrogen as SN 2008ax, roughly a few x 0.01 M_sun. Early-time spectropolarimetry (6 and 9 days after shock breakout) revealed strong line polarization modulations of 3.4% across H-alpha, indicating the presence of large asphericities in the outer ejecta. The continuum shares a common polarization angle with the hydrogen, helium, and oxygen lines, while the calcium and iron absorptions are oriented at different angles. This is clear evidence of deviations from axisymmetry even in the outer ejecta. Intrinsic continuum polarization of 0.64% only nine days after shock breakout shows that the outer layers of the ejecta were quite aspherical. A single epoch of late-time spectropolarimetry, as well as the shapes of the nebular line profiles, demonstrate that asphericities extended from the outermost layers all the way down to the center of this SN. [Abridged]Comment: 24 pages, 21 figures, 4 tables, appendix, minor revisions to match version accepted by Ap

    SN 2005cs in M51 I. The first month of evolution of a subluminous SN II plateau

    Get PDF
    Early time optical observations of supernova (SN) 2005cs in the Whirlpool Galaxy (M51), are reported. Photometric data suggest that SN 2005cs is a moderately under-luminous Type II plateau supernova (SN IIP). The SN was unusually blue at early epochs (U-B ~ -0.9 about three days after explosion) which indicates very high continuum temperatures. The spectra show relatively narrow P-Cygni features, suggesting ejecta velocities lower than observed in more typical SNe IIP. The earliest spectra show weak absorption features in the blue wing of the He I 5876A absorption component and, less clearly, of Hβ\beta and Hα\alpha. Based on spectral modelling, two different interpretations can be proposed: these features may either be due to high-velocity H and He I components, or (more likely) be produced by different ions (N II, Si II). Analogies with the low-luminosity, 56^{56}Ni-poor, low-velocity SNe IIP are also discussed. While a more extended spectral coverage is necessary in order to determine accurately the properties of the progenitor star, published estimates of the progenitor mass seem not to be consistent with stellar evolution models.Comment: 12 pages, 11 Figures. Accepted for publication in MNRA

    SN 2005cs in M51 II. Complete Evolution in the Optical and the Near-Infrared

    Get PDF
    We present the results of the one year long observational campaign of the type II-plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool Galaxy). This extensive dataset makes SN 2005cs the best observed low-luminosity, 56Ni-poor type II-plateau event so far and one of the best core-collapse supernovae ever. The optical and near-infrared spectra show narrow P-Cygni lines characteristic of this SN family, which are indicative of a very low expansion velocity (about 1000 km/s) of the ejected material. The optical light curves cover both the plateau phase and the late-time radioactive tail, until about 380 days after core-collapse. Numerous unfiltered observations obtained by amateur astronomers give us the rare opportunity to monitor the fast rise to maximum light, lasting about 2 days. In addition to optical observations, we also present near-infrared light curves that (together with already published UV observations) allow us to construct for the first time a reliable bolometric light curve for an object of this class. Finally, comparing the observed data with those derived from a semi-analytic model, we infer for SN 2005cs a 56Ni mass of about 0.003 solar masses, a total ejected mass of 8-13 solar masses and an explosion energy of about 3 x 10^50 erg.Comment: 18 pages, 18 figures, accepted for publication in MNRA

    Massive stars as thermonuclear reactors and their explosions following core collapse

    Full text link
    Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure

    The He-rich Stripped-Envelope Core-Collapse Supernova 2008ax

    Get PDF
    Extensive optical and near-infrared (NIR) observations of the type IIb supernova 2008ax are presented, covering the first year after the explosion. The light curve is mostly similar in shape to that of the prototypical type IIb SN 1993J, but shows a slightly faster decline rate at late phases and lacks the prominent narrow early-time peak of SN 1993J. From the bolometric light curve and ejecta expansion velocities, we estimate that about 0.07-0.15 solar masses of 56Ni were produced during the explosion and that the total ejecta mass was between 2 and 5 solar masses, with a kinetic energy of at least 10^51 erg. The spectral evolution of SN 2008ax is similar to that of the type Ib SN 2007Y, exhibiting high-velocity Ca II features at early phases and signs of ejecta-wind interaction from H-alpha observations at late times. NIR spectra show strong He I lines similar to the type Ib SN 1999ex, and a large number of emission features at late times. Particularly interesting are the strong, double-peaked He I lines in late NIR spectra, which - together with double-peaked [O I] emission in late optical spectra - provide clues for asymmetry and large-scale Ni mixing in the ejecta.Comment: 19 pages, 17 figures; accepted for publication in MNRA

    The massive binary companion star to the progenitor of supernova 1993J

    Full text link
    The massive star which underwent core-collapse to produce SN1993J was identified as a non-variable red supergiant star in images of the galaxy M81 taken before explosion. However the stellar source showed an excess in UV and B-band colours that suggested it had either a hot, massive companion star or was embedded in an unresolved young stellar association. The spectra of SN1993J underwent a remarkable transformation between a hydrogen-rich Type II supernova and a helium-rich (hydrogen-deficient) Type Ib. The spectral and photometric peculiarities were explained by models in which the 13-20 solar mass supergiant had lost almost its entire hydrogen envelope to a close binary companion. The binary scenario is currently the best fitting model for the production of such type IIb supernovae, however the hypothetical massive companion stars have so far eluded discovery. Here we report the results of new photometric and spectroscopic observations of SN1993J, 10 years after explosion. At the position of the fading SN we detect the unambiguous signature of a massive star, the binary companion to the progenitor. This is evidence that this type of SN originate in interacting binary systems.Comment: 18 pages (3 figures
    corecore