523 research outputs found

    Biomass Allocation is an Important Determinant of the Tannin Concentration in Growing Plants

    Get PDF
    Background and aims Condensed tannins (CTs) in the diet affect consumers in a concentration-dependent manner. Because of their importance in plant defence against herbivores and pathogens as well as their potential application against gastrointestinal parasites of ruminants in agronomy, an understanding of the seasonal dynamics of CT concentrations during plant growth is essential. Methods Over a vegetation period, CT concentrations in leaves, stems and roots and the biomass proportions between these organs were investigated in Onobrychis viciifolia, Lotus corniculatus and Cichorium intybus. Based on the experimental data, a model has been suggested to predict CT concentrations in harvestable biomass of these species. Key Results During the experiment, leaf mass fractions of plants decreased from 85, 64, 85 to 30, 18, 39% d. wt in Onobrychis, Lotus and Cichorium, respectively, and proportions of stems and roots increased accordingly. While CT concentrations almost doubled in leaves in Onobrychis (from 52 to 86mg g−1 d. wt, P<0·001) and Lotus (from 25 to 54mg g−1 d. wt, P<0·001), they were stable at low levels in expanding leaves of Cichorium (5mg g−1 d. wt) and in stems and roots of all investigated species. Due to an inverse effect of the increasing CT concentrations in leaves and simultaneous dilution from increasing proportions of ‘CT-poor' stems, CT concentrations in harvestable biomass were stable over time in all investigated species: 62, 26 and 5mg g−1 d. wt for Onobrychis, Lotus and Cichorium, respectively. Conclusions As a consequence of the unequal distribution of tannins in different plant parts and due to the changing biomass proportions between them, various herbivores (e.g. a leaf-eating insect and a grazing ruminant) may find not only different concentrations of CT in their diets but also different CT dynamics during the season. For the prediction of seasonal variations of CT concentrations, biomass allocation and accumulation of none-CT plant material are likely to be as important predictors as the knowledge of CT synthesis and its regulatio

    The Growth of Black Holes and Bulges at the Cores of Cooling Flows

    Get PDF
    Central cluster galaxies (cDs) in cooling flows are growing rapidly through gas accretion and star formation. At the same time, AGN outbursts fueled by accretion onto supermassive black holes are generating X-ray cavity systems and driving outflows that exceed those in powerful quasars. We show that the resulting bulge and black hole growth follows a trend that is roughly consistent with the slope of the local (Magorrian) relation between bulge and black hole mass for nearby quiescent ellipticals. However, a large scatter suggests that cD bulges and black holes do not always grow in lock-step. New measurements made with XMM, Chandra, and FUSE of the condensation rates in cooling flows are now approaching or are comparable to the star formation rates, alleviating the need for an invisible sink of cold matter. We show that the remaining radiation losses can be offset by AGN outbursts in more than half of the systems in our sample, indicating that the level of cooling and star formation is regulated by AGN feedback.Comment: 3 pages, 4 figures, to appear in the proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies," edited by H. Boehringer, P. Schuecker, G. W. Pratt, and A. Finogueno

    Spectroastrometry of rotating gas disks for the detection of supermassive black holes in galactic nuclei. II. Application to the galaxy Centaurus A (NGC 5128)

    Full text link
    We measure the black hole mass in the nearby active galaxy Centaurus A (NGC 5128) using a new method based on spectroastrometry of a rotating gas disk. The spectroastrometric approach consists in measuring the photocenter position of emission lines for different velocity channels. In a previous paper we focused on the basic methodology and the advantages of the spectroastrometric approach with a detailed set of simulations demonstrating the possibilities for black hole mass measurements going below the conventional spatial resolution. In this paper we apply the spectroastrometric method to multiple longslit and integral field near infrared spectroscopic observations of Centaurus A. We find that the application of the spectroastrometric method provides results perfectly consistent with the more complex classical method based on rotation curves: the measured BH mass is nearly independent of the observational setup and spatial resolution and the spectroastrometric method allows the gas dynamics to be probed down to spatial scales of ~0.02", i.e. 1/10 of the spatial resolution and ~1/50 of BH sphere of influence radius. The best estimate for the BH mass based on kinematics of the ionized gas is then log(MBH (sin i)^2/M\odot)=7.5 \pm 0.1 which corresponds to MBH = 9.6(+2.5-1.8) \times 10^7 M\odot for an assumed disk inclination of i = 35deg. The complementarity of this method with the classic rotation curve method will allow us to put constraints on the disk inclination which cannot be otherwise derived from spectroastrometry. With the application to Centaurus A, we have shown that spectroastrometry opens up the possibility of probing spatial scales smaller than the spatial resolution, extending the measured MBH range to new domains which are currently not accessible: smaller BHs in the local universe and similar BHs in more distant galaxies

    Normalized indices derived from visceral adipose mass assessed by MRI and their correlation with markers for insulin resistance and prediabetes

    Get PDF
    Visceral adipose tissue (VAT) plays an important role in the pathogenesis of insulin resistance (IR), prediabetes and type 2 diabetes. However, VAT volume alone might not be the best marker for insulin resistance and prediabetes or diabetes, as a given VAT volume may differently impact on these metabolic traits based on body height, gender, age and ethnicity. In a cohort of 1295 subjects from the TĂŒbingen Diabetes Family Study (TDFS) and in 9978 subjects from the UK Biobank (UKBB), undergoing magnetic resonance imaging for quantification of VAT volume, total adipose tissue (TAT, in the TDFS), total abdominal adipose tissue (TAAT) in the UKBB, and total lean tissue (TLT), VAT volume and several VAT-indices were investigated for their relationships with insulin resistance and glycemic traits. VAT-related indices were calculated by correcting for body height (VAT/m: VAT/body height; VAT/mÂČ: VAT/(body height)ÂČ, and VAT/mÂł: VAT/(body height)Âł), TAT (%VAT), TLT (VAT/TLT) and weight (VAT/WEI), with closest equivalents used within the UKBB dataset. Prognostic values of VAT and VAT-related indices for insulin sensitivity, HbA1c levels and prediabetes/diabetes were analyzed for males and females. Males had higher VAT volume and VAT-related indices than females in both cohorts (p < 0.0001) and VAT volume has shown to be a stronger determinant for insulin sensitivity than anthropometric variables. Among the parameters uncorrected VAT and derived indices, VAT/mÂł most strongly correlated negatively with insulin sensitivity and positively with HbA1c levels and prediabetes/diabetes in the TDFS (RÂČ = 0.375/0.305 for females/males for insulin sensitivity, 0.178/0.148 for HbA1c levels vs. – e.g. – 0.355/0.293 and 0.144/0.133 for VAT, respectively) and positively with HbA1c (RÂČ = 0.046/0.042) in the UKBB for females and males. Furthermore, VAT/mÂł was found to be a significantly better determinant of insulin resistance or prediabetes than uncorrected VAT volume (p < 0.001/0.019 for females/males regarding insulin sensitivity, p < 0.001/< 0.001 for females/males regarding HbA1c). Evaluation of several indices derived from VAT volume identified VAT/mÂł to most strongly correlate with insulin sensitivity and glucose metabolism. Thus, VAT/mÂł appears to provide better indications of metabolic characteristics (insulin sensitivity and pre-diabetes/diabetes) than VAT volume alone

    A Simple Model for Lensing by Black Holes in Galactic Nuclei

    Full text link
    The lensing properties of the Plummer model with a central point mass and external shear are derived, including the image multiplicities, critical curves and caustics. This provides a simple model for a flattened galaxy with a central supermassive black hole. For the Plummer model with black hole, the maximum number of images is 4, provided the black hole mass is less than an upper bound which is calculated analytically. This introduces a method to constrain black hole masses by counting images, thus applicable at cosmological distance. With shear, the maximum number of images is 6 and we illustrate the occurrence of an astroid caustic and two metamorphoses.Comment: 7 pages, 4 figures, MNRAS, in press, small changes mad

    The Relation between Black Hole Mass and Host Spheroid Stellar Mass out to z~2

    Get PDF
    We combine Hubble Space Telescope images from the Great Observatories Origins Deep Survey with archival Very Large Telescope and Keck spectra of a sample of 11 X-ray selected broad-line active galactic nuclei in the redshift range 1<z<2 to study the black hole mass - stellar mass relation out to a lookback time of 10 Gyrs. Stellar masses of the spheroidal component are derived from multi-filter surface photometry. Black hole masses are estimated from the width of the broad MgII emission line and the 3000A nuclear luminosity. Comparing with a uniformly measured local sample and taking into account selection effects, we find evolution in the form M_BH/M_spheroid ~ (1+z)^(1.96+/-0.55), in agreement with our earlier studies based on spheroid luminosity. However, this result is more accurate because it does not require a correction for luminosity evolution and therefore avoids the related and dominant systematic uncertainty. We also measure total stellar masses. Combining our sample with data from the literature, we find M_BH/M_host ~ (1+z)^(1.15+/-0.15), consistent with the hypothesis that black holes (in the range M_BH ~ 10^8-9 M_sun) predate the formation of their host galaxies. Roughly one third of our objects reside in spiral galaxies; none of the host galaxies reveal signs of interaction or major merger activity. Combined with the slower evolution in host stellar masses compared to spheroid stellar masses, our results indicate that secular evolution or minor mergers play a non-negligible role in growing both BHs and spheroids.Comment: 7 pages, 3 figures. Final version, accepted for publication in The Astrophysical Journa

    An Over-Massive Black Hole in the Compact Lenticular Galaxy NGC1277

    Get PDF
    All massive galaxies likely have supermassive black holes at their centers, and the masses of the black holes are known to correlate with properties of the host galaxy bulge component. Several explanations have been proposed for the existence of these locally-established empirical relationships; they include the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, or galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are thus important for distinguishing between various theoretical models of galaxy evolution, and they further form the basis for all black hole mass measurements at large distances. In particular, observations have shown that the mass of the black hole is typically 0.1% of the stellar bulge mass of the galaxy. The small galaxy NGC4486B currently has the largest published fraction of its mass in a black hole at 11%. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, disky galaxy with a mass of 1.2 x 10^11 Msun. From the data, we determine that the mass of the central black hole is 1.7 x 10^10 Msun, or 59% its bulge mass. Five other compact galaxies have properties similar to NGC 1277 and therefore may also contain over-sized black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the normal black hole mass scaling relations.Comment: 7 pages. 6 figures. Nature. Animation at http://www.mpia.de/~bosch/blackholes.htm

    Molecular Gas in Infrared Ultraluminous QSO Hosts

    Full text link
    We report CO detections in 17 out of 19 infrared ultraluminous QSO (IR QSO) hosts observed with the IRAM 30m telescope. The cold molecular gas reservoir in these objects is in a range of 0.2--2.1×1010M⊙\times 10^{10}M_\odot (adopting a CO-to-H2{\rm H_2} conversion factor αCO=0.8M⊙(Kkms−1pc2)−1\alpha_{\rm CO}=0.8 M_\odot {\rm (K km s^{-1} pc^2)^{-1}}). We find that the molecular gas properties of IR QSOs, such as the molecular gas mass, star formation efficiency (LFIR/LCOâ€ČL_{\rm FIR}/L^\prime_{\rm CO}) and the CO (1-0) line widths, are indistinguishable from those of local ultraluminous infrared galaxies (ULIRGs). A comparison of low- and high-redshift CO detected QSOs reveals a tight correlation between LFIR_{\rm FIR} and LCO(1−0)â€ČL^\prime_{\rm CO(1-0)} for all QSOs. This suggests that, similar to ULIRGs, the far-infrared emissions of all QSOs are mainly from dust heated by star formation rather than by active galactic nuclei (AGNs), confirming similar findings from mid-infrared spectroscopic observations by {\it Spitzer}. A correlation between the AGN-associated bolometric luminosities and the CO line luminosities suggests that star formation and AGNs draw from the same reservoir of gas and there is a link between star formation on ∌\sim kpc scale and the central black hole accretion process on much smaller scales.Comment: 30 pages, 9 figures, accepted for publication in The Astrophysical Journa

    Constraining stellar assembly and AGN feedback at the peak epoch of star formation

    Get PDF
    We study stellar assembly and feedback from active galactic nuclei (AGN) around the epoch of peak star formation (1<z<2), by comparing hydrodynamic simulations to rest-frame UV-optical galaxy colours from the Wide Field Camera 3 (WFC3) Early-Release Science (ERS) Programme. Our Adaptive Mesh Refinement simulations include metal-dependent radiative cooling, star formation, kinetic outflows due to supernova explosions, and feedback from supermassive black holes. Our model assumes that when gas accretes onto black holes, a fraction of the energy is used to form either thermal winds or sub-relativistic momentum-imparting collimated jets, depending on the accretion rate. We find that the predicted rest-frame UV-optical colours of galaxies in the model that includes AGN feedback is in broad agreement with the observed colours of the WFC3 ERS sample at 1<z<2. The predicted number of massive galaxies also matches well with observations in this redshift range. However, the massive galaxies are predicted to show higher levels of residual star formation activity than the observational estimates, suggesting the need for further suppression of star formation without significantly altering the stellar mass function. We discuss possible improvements, involving faster stellar assembly through enhanced star formation during galaxy mergers while star formation at the peak epoch is still modulated by the AGN feedback.Comment: 6 pages, 4 figures, accepted for publication in MNRAS Letter
    • 

    corecore