22 research outputs found

    DADA: data assimilation for the detection and attribution of weather and climate-related events

    Get PDF
    A new nudging method for data assimilation, delay‐coordinate nudging, is presented. Delay‐coordinate nudging makes explicit use of present and past observations in the formulation of the forcing driving the model evolution at each time step. Numerical experiments with a low‐order chaotic system show that the new method systematically outperforms standard nudging in different model and observational scenarios, also when using an unoptimized formulation of the delay‐nudging coefficients. A connection between the optimal delay and the dominant Lyapunov exponent of the dynamics is found based on heuristic arguments and is confirmed by the numerical results, providing a guideline for the practical implementation of the algorithm. Delay‐coordinate nudging preserves the easiness of implementation, the intuitive functioning and the reduced computational cost of the standard nudging, making it a potential alternative especially in the field of seasonal‐to‐decadal predictions with large Earth system models that limit the use of more sophisticated data assimilation procedures

    Seasonal-to-decadal predictions with the ensemble Kalman filter and the Norwegian Earth System Model: a twin experiment

    Get PDF
    Here, we firstly demonstrate the potential of an advanced flow dependent data assimilation method for performing seasonal-to-decadal prediction and secondly, reassess the use of sea surface temperature (SST) for initialisation of these forecasts. We use the Norwegian Climate Prediction Model (NorCPM), which is based on the Norwegian Earth System Model (NorESM) and uses the deterministic ensemble Kalman filter to assimilate observations. NorESM is a fully coupled system based on the Community Earth System Model version 1, which includes an ocean, an atmosphere, a sea ice and a land model. A numerically efficient coarse resolution version of NorESM is used. We employ a twin experiment methodology to provide an upper estimate of predictability in our model framework (i.e. without considering model bias) of NorCPM that assimilates synthetic monthly SST data (EnKF-SST). The accuracy of EnKF-SST is compared to an unconstrained ensemble run (FREE) and ensemble predictions made with near perfect (i.e. microscopic SST perturbation) initial conditions (PERFECT). We perform 10 cycles, each consisting of a 10-yr assimilation phase, followed by a 10-yr prediction. The results indicate that EnKF-SST improves sea level, ice concentration, 2 m atmospheric temperature, precipitation and 3-D hydrography compared to FREE. Improvements for the hydrography are largest near the surface and are retained for longer periods at depth. Benefits in salinity are retained for longer periods compared to temperature. Near-surface improvements are largest in the tropics, while improvements at intermediate depths are found in regions of large-scale currents, regions of deep convection, and at the Mediterranean Sea outflow. However, the benefits are often small compared to PERFECT, in particular, at depth suggesting that more observations should be assimilated in addition to SST. The EnKF-SST system is also tested for standard ocean circulation indices and demonstrates decadal predictability for Atlantic overturning and sub-polar gyre circulations, and heat content in the Nordic Seas. The system beats persistence forecast and shows skill for heat content in the Nordic Seas that is close to PERFECT

    A comparison of the performance of the 3-D super-ensemble and an ensemble Kalman filter for short-range regional ocean prediction

    No full text
    This study compares the ability of two approaches integrating models and data to forecast the Ligurian Sea regional oceanographic conditions in the short-term range (0–72 hours) when constrained by a common observation dataset. The post-processing 3-D super-ensemble (3DSE) algorithm, which uses observations to optimally combine multi-model forecasts into a single prediction of the oceanic variable, is first considered. The 3DSE predictive skills are compared to those of the Regional Ocean Modeling System model in which observations are assimilated through a more conventional ensemble Kalman filter (EnKF) approach. Assimilated measurements include sea surface temperature maps, and temperature and salinity subsurface observations from a fleet of five underwater gliders. Retrospective analyses are carried out to produce daily predictions during the 11-d period of the REP10 sea trial experiment. The forecast skill evaluation based on a distributed multi-sensor validation dataset indicates an overall superior performance of the EnKF, both at the surface and at depth. While the 3DSE and EnKF perform comparably well in the area spanned by the incorporated measurements, the 3DSE accuracy is found to rapidly decrease outside this area. In particular, the univariate formulation of the method combined with the absence of regular surface salinity measurements produces large errors in the 3DSE salinity forecast. On the contrary, the EnKF leads to more homogeneous forecast errors over the modelling domain for both temperature and salinity. The EnKF is found to consistently improve the predictions with respect to the control solution without assimilation and to be positively skilled when compared to the climatological estimate. For typical regional oceanographic applications with scarce subsurface observations, the lack of physical spatial and multivariate error covariances applicable to the individual model weights in the 3DSE formulation constitutes a major limitation for the performance of this multi-model-data fusion approach compared to conventional advanced data assimilation strategies
    corecore