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A B S T R A C T
A key strategy to improve the skill of quantitative predictions of precipitation, as well as hazardous weather such as
severe thunderstorms and flash floods is to exploit the use of observations of convective activity (e.g. from radar). In
this paper, a convection-permitting ensemble prediction system (EPS) aimed at addressing the problems of forecasting
localized weather events with relatively short predictability time scale and based on a 1.5 km grid-length version of the
Met Office Unified Model is presented. Particular attention is given to the impact of using predicted observations of
radar-derived precipitation intensity in the ensemble transform Kalman filter (ETKF) used within the EPS. Our initial
results based on the use of a 24-member ensemble of forecasts for two summer case studies show that the convective-
scale EPS produces fairly reliable forecasts of temperature, horizontal winds and relative humidity at 1 h lead time,
as evident from the inspection of rank histograms. On the other hand, the rank histograms seem also to show that the
EPS generates too much spread for forecasts of (i) surface pressure and (ii) surface precipitation intensity. These may
indicate that for (i) the value of surface pressure observation error standard deviation used to generate surface pressure
rank histograms is too large and for (ii) may be the result of non-Gaussian precipitation observation errors. However,
further investigations are needed to better understand these findings. Finally, the inclusion of predicted observations of
precipitation from radar in the 24-member EPS considered in this paper does not seem to improve the 1-h lead time
forecast skill.

1. Introduction

The rate of increase of computer power experienced to date
has allowed meteorological agencies to run short-range numeri-
cal weather prediction (NWP) forecasts at increasing resolution.
This has led to the development of operational ‘deep-convection-
permitting’ models (e.g. Clark, 2009) and characterized by a grid
length of about 1 km. These can represent deep convection ex-
plicitly rather than through a parameterization scheme. Because
of computational costs, which for a constant domain size in-
crease as the cube of the grid length size reduction ratio, these
models are implemented over a limited area only and lateral
boundary conditions are provided by nested model runs at lower
resolution.
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Another benefit of increasing the model horizontal resolution
is the possibility of using higher resolution topography and a
better description of surface fluxes, as well as of using high-
resolution measurements capable of describing ongoing con-
vection for assimilation (e.g. Stensrud et al., 2009). The main
source of observations that are able to provide a detailed repre-
sentation of convective activity is from radar, either in the form
of radial velocity and reflectivity or in the form of precipitation
measurements (e.g. Sun, 2005).

A major aim of considering models at resolutions capable
of resolving deep convective systems (if not clouds) is to im-
prove quantitative precipitation forecasting (e.g. Mass et al.,
2002; Fritsch and Carbone, 2004) as well as hazardous weather
such as severe thunderstorms (e.g. Stensrud et al., 2009). Over
the last few years, a number of studies have demonstrated the
utility of using convection-permitting models for convective-
scale NWP. For example, Done et al. (2006) compared results
with the Weather Research and Forecast (WRF) model at a
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resolution of 10 and 4 km, with and without parameterization
of convection, respectively. They showed that forecasts at 4 km
resolution were characterized by a better correspondence be-
tween observed and simulated mesoscale convective systems
(MCSs), as well as by a better determination of the occurrence
of MCSs. Furthermore, Lean et al. (2008) studied the perfor-
mance of nested high-resolution versions (12, 4 and 1 km grid
lengths) of the Unified Model (UM), when no convection pa-
rameterization is used within the 1 km resolution model, for a
number of summer-time case studies. By allowing the model to
represent convection explicitly at 1 km resolution, they found
that it was possible to achieve a better representation of con-
vection initiation and a more realistic description of mesoscale
features. However, a remaining difficulty was the presence of
too many convective cells with low rain rate.

Despite the practical advantages and the increasing amount of
evidence of improved performance, forecast skill of convection-
permitting models is still limited by the large sensitivities to
initial conditions (e.g. Hohenegger and Schär, 2007) and to
model error (e.g. Park and Droegemeier, 2000; Gilmore et al.,
2004; Tong and Xue, 2008). These large sensitivities reduce
predictability, which is more pronounced at smaller horizontal
scales: a 20 km wavelength feature (e.g. a thunderstorm) has a
deterministic predictability horizon of 1–2 h (e.g. Lilly, 1990).
The short predictability horizon means that forecasts are quickly
affected by significant errors, which due to nonlinearities may
not be normally distributed. In this case, a probabilistic approach
based on a forecast ensemble can be effective in providing in-
formative predictions.

This paper describes a convective-scale version of the
Met Office Global and Regional Ensemble Prediction System
(MOGREPS; Bowler et al., 2008) over the southern United
Kingdom, set up to study forecast error and predictability. This
will help design the future Met Office NWP-based nowcasting
system. An initial characterization of its behaviour and skill at
1 h lead time via a series of experiments performed on two case
studies is provided. The other main aim of this paper is to inves-
tigate the impact of predicted radar-derived surface precipitation
rates on the forecast skill obtained with the convective-scale ver-
sion of the MOGREPS. The structure of the paper is as follows.
Section 2 is a description of the convective-scale ensemble pre-
diction system used in this study is provided. Sections 3 and
4 describe the ensemble forecasting experiments performed in
this work and their results, respectively. Finally, Section 5 is a
summary of the results and the conclusions.

2. Convective-scale ensemble prediction system

In this work, the evolution of forecast error is estimated by means
of an ensemble of forecasts from a convection-permitting version
of the UM at 1.5 km horizontal grid spacing over the southern
United Kingdom (Fig. 1), with 360 × 288 points over 70 levels
(with variable vertical grid spacing and top model level height of

Fig. 1. The 1.5 and 4 km models domains.

about 38 km), initialized from a set of initial conditions as dis-
cussed below. The dynamic formulation of the UM is based on
non-hydrostatic equations that are solved on a rotated equatorial
latitude–longitude horizontal grid with Arakawa C staggering.
The vertical levels are described by means of a hybrid-height,
terrain-following coordinate with Charney-Philips staggering
(Davies et al., 2005). The large-scale precipitation scheme used
in this configuration is based on microphysical calculations in-
volving water vapour, cloud liquid and ice water content, treated
as prognostic variables (Wilson and Ballard, 1999). In addition,
a prognostic rain variable is advected with the three-dimensional
wind field. so as to limit the occurrence of grid-point convection
(Lean et al., 2008, their section 2.d).

The high-resolution control analysis is produced using a ver-
sion of the data assimilation system described in Dixon et al.
(2009), adapted to an hourly cycle frequency. Lateral boundary
conditions (LBCs) are provided by a 4 km grid spacing model
over the United Kingdom (Fig. 1). In each cycle, the model is run
from T − 0.5 with respect to the cycle validity time T (UTC),
using the T + 0.5 background model state, xb, from the previous
cycle as initial conditions (Fig. 2). A 3DVAR scheme (Lorenc
et al., 2000) is used for the analysis of surface observations of
pressure, 1.5-m temperature, 1.5-m relative humidity and 10-m
u- and v-component of wind and aircraft observations of temper-
ature and u and v-component of wind. This 3DVAR scheme uses
a B-matrix whose formulation is suited to synoptic-scale rather
than convective-scale dynamics as the Met Office does not yet
have a truly convective-scale 3DVAR system. We assume for
this paper that this preliminary system is still useful to study
convective-scale forecasts as fine-scale features are expected to
emerge as the ensemble of high-resolution forecasts progresses.
Assimilation increments derived from 3DVAR, x′

VAR, are added
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Fig. 2. Schema of the data assimilation and
ensemble cycles. In the case of the data
assimilation cycle, only 3DVAR increments
are added via the IAU. In the case of each
ensemble forecast, both 3DVAR and the
relevant ensemble analysis perturbations are
added via the IAU (refer to text for more
details).

to the model state via the incremental analysis update (IAU)
procedure (Bloom et al., 1996) (which reduces spurious imbal-
ance) from T − 0.5 to T + 0.5. Convective-scale assimilation
of cloud profiles and surface precipitation from the UK weather
radar network (Golding, 1998) was performed via two nudg-
ing procedures. Cloud nudging was used to assimilate hourly
humidity information produced using the Moisture Observa-
tion Pre-processing System (MOPS) (Macpherson et al., 1996).
Radar-derived surface precipitation rates, available on a 5 km
resolution grid every 15 min, are corrected, quality controlled
(Harrison et al., 2000), re-sampled onto a 15 km resolution grid
and assimilated with a latent-heat nudging scheme (Jones and
Macpherson, 1997).

The initial conditions for the first cycle of the high-resolution
ensemble forecasting experiments (described in S 3) are pro-
vided by a set of K initial fields (presently equal to 24) de-
termined by adding the available K − 1 MOGREPS ini-
tial perturbations—with a horizontal resolution of 24 km, over
38 levels in the vertical—to the analysis at the same resolution.
These ‘large-scale’ initial conditions are then interpolated on
to the ‘high-resolution’ convection-permitting model grid. The
analysis, also interpolated on to the high-resolution grid, is sub-
tracted from the initial conditions, to derive a set of K − 1 per-
turbations. These perturbations are added to the high-resolution
analysis, which includes high-resolution observational informa-
tion from radar, via the IAU (Fig. 2).

New high-resolution perturbations are calculated at every 1 h
forecast lead time by means of an ensemble transform Kalman
filter (ETKF). According to this algorithm, the departures of the
initial conditions, xa

i , from the analysis xa at a given time, are
related to the departures of the model forecasts, xf

i , from the
mean xf as

Xa = XfT�, (1)

where Xf = (xf
1 − x̄f, . . . , xf

i − x̄f, . . . , xf
K − x̄f ) and Xa =

(xa
1 − xa, . . . , xa

i − xa, . . . , xa
K − xa), xf

i and xa
i being the ith en-

semble forecast and analysis, respectively. T is the ensemble
transform matrix, which can be expressed as (Wang et al.,
2004)

T = C(� + I)−1/2CT, (2)

where C is a matrix whose columns are the right singular vectors
of E and � is a diagonal matrix whose diagonal elements are the
nonzero singular values of E. � is an ‘inflation factor’ needed to
increase the analysis error variance and compensate the sampling
error due to the relatively small ensemble size used in the ETKF
(Section 2.1). The matrix E is given by

E = R−1/2H
(
Pf

e

)1/2
, (3)

where (Pf
e)

1/2 ≡ Xf/
√

K − 1 is a square root of the forecast
error covariance matrix estimated by means of an ensemble of
K forecasts, R is the observation error covariance matrix and
H is the observation operator, here assumed to linearly relate
the observations with the true atmospheric state vector. Note
that from (2) and (3) it is clear that only the components of the
observation vector that are accurate enough to produce singular
values of E that are significantly greater than 1 (or, in other
words, with signal to noise ratio significantly greater than 1)
will be able to reduce the analysis perturbation amplitude.

2.1. Inflation factor

The scheme used to calculate the inflation factor in this work
is detailed in Bowler et al. (2008). For large-scale versions of
MOGREPS, the inflation factor is based on sonde and satellite
observation types. However, the temporal frequency at which
these observations are available (every 6 h in the case of son-
des) as well as their spatial coverage is inadequate for the 1-h
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cycle nowcasting system over the southern UK presented here.
For this reason, the inflation factor used in this study was based
on selected observations from surface stations (which include
pressure, temperature, horizontal wind components, relative hu-
midity and visibility) and aircraft reports (which include temper-
ature and horizontal winds). Note that precipitation observations
from radar were not considered for the purpose of calculating
the inflation factor, given their statistical distribution was more
likely to be non-Gaussian (see Section 4.2.1 for more details).

The inflation factor is used to scale the analysis perturbations
at time T with the aim of ensuring that at T + 1, the variance
of the innovations σ 2

d—defined as the difference between obser-
vations and observations predicted by means of the ensemble
mean forecast—is given by

σ 2
d = σ 2

f + σ 2
tobs, (4)

where σ 2
f is the variance of the ensemble forecast error (in obser-

vation space), and σ 2
tobs is the variance of the ‘true’ observation

error, when it is assumed that forecast errors are uncorrelated
with observation errors. To avoid inflation factors that vary too
much from cycle to cycle, each factor includes a correction given
by the ratio of the mean square spread at the previous cycle to
the mean square spread at the current cycle (see Bowler et al.,
2008). Note that the term ‘true’ observation error is adopted to
distinguish our estimates of actual observation error from those
used in this work for variational assimilation, σ 2

VAR, which are
usually chosen to be larger than σ 2

tobs, as a means of dealing
with problems of correlation and representativeness. Estimates
for σ 2

tobs were obtained by first running the ensemble system
for a relatively short number of cycles (four), using σ 2

VAR as a
proxy for σ 2

tobs. A linear regression of σ 2
d against σ 2

f was then
performed using the output from these runs, to determine σ 2

tobs

(as the value of σ 2
d extrapolated for σ 2

f = 0). Reliable estimates
(expressed in terms of σ 2

tobs/σ
2
VAR in Table 1) were found for

a subset only of the observations. In the case of the other ob-
servations, the regression method was not found to be useful as
σ 2

f was found to be approximately constant or to decrease with
increasing σ 2

d (contradicting to the assumptions of eq. 4). The
inflation factor calculations performed in all subsequent exper-

Table 1. Observations with corresponding error standard deviation
used for 3DVAR assimilation and error ratio used for the inflation
factor calculations

Observation type VAR error Error ratio

Surface temperature 1.1 K 1.0
Surface u- and v-wind 1.2 ms−1 0.6
Aircraft temperature 0.84–1.9 K 1.0
Aircraft u-wind 1.45–2.8 ms−1 1.0
Aircraft v-wind 1.45–2.8 ms−1 1.0

Note: Error ratio is defined as the ratio between ‘true’ observation error
standard deviation and that used for 3DVAR (see text for more details).

iments used (at most) only those observations and associated
errors listed in Table 1.

2.2. Use of radar-derived surface precipitation data
within the ETKF

The original ETKF scheme used in MOGREPS was not designed
to be used with predicted observations (denoted as Hxf

i , in the
case of the ith forecast ensemble member) of precipitation, so
that a number of modifications to the Met Office operational
observation processing system (OPS) had to be undertaken. The
purpose of these modifications was to create a set of predicted
observations, by using the model surface precipitation rate field
at a given time, which was spatially averaged and interpolated so
as to match the resolution and location of the radar observations
that are assimilated in the UM. In this way, by using a set of
K ensemble members, it is now possible to create a set of K
predicted observations of surface precipitation rate at a given
location and time and calculate the term H(Pf

e)
1/2 within the

transform matrix, by taking the mean of all sets of K predicted
observations.

To calculate the transform matrix with (3), an expression
for the surface precipitation rate observation error covariance
matrix R is also required. The latent heat nudging procedure
does not require this information as it only makes use of a
quality indicator that depends on the radar range and elevation
of the measurement from the model freezing level (see Dixon
et al., 2009 and references therein), which is not suitable for
determining R.

Over the last few years, the Japan Meteorological Agency
(JMA) has been assimilating 2.5 km resolution hourly precipita-
tion amounts from radar using 4DVAR with a mesoscale model
centred over Japan (Koizumi et al., 2005). The JMA model hor-
izontal resolution used in their paper is 10 km over 40 vertical
levels up to 10 hPa, whereas the resolution of the tangent lin-
ear and adjoint model is reduced to 20 km, for computational
efficiency. The departures of hourly precipitation amounts from
radar and from a model short-range forecast at observation loca-
tions and times showed evidence of non-Gaussian observation
errors, with a distribution closely approximated by a function
of observation and model forecast values. This error distribution
gives rise to a quadratic assimilation cost function with a smaller
curvature (i.e. with a larger observation error variance) for fore-
cast values that are larger than observation values. This evidence
led the JMA to model precipitation observation error standard
deviation from radar σ r, to be used in variational assimilation,
as

σr =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

crc xf
r ≤ yo

r and yo
r < rc

cyo
r xf

r ≤ yo
r and yo

r ≥ rc

3crc xf
r > yo

r and yo
r < rc

3cyo
r xf

r > yo
r and yo

r ≥ rc

(5)
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where yo
r and xf

r are the observation and the model forecast value,
respectively, and rc = 1 mm. Note that, according to Koizumi
et al. (2005), the factor c in (5) was determined empirically to
be 1.

To describe the error statistics of radar-derived surface pre-
cipitation rates used in this work we decided to adopt the same
expression as in (5), but with rc = 1 mmh−1 (note our units)
and a variable c, so as to control the forecast spread reduction
due to radar observations. If not otherwise specified, c should be
supposed equal to 1.

3. Description of the experiments

In this section, we describe two case studies that were chosen
to assess the performance of the ensemble prediction system,
one focused on forecast skill of temperature, pressure and wind
fields (on 27 July 2008, denoted as C1) and the other focused on
precipitation (on 26 July 2007, denoted as C2).

3.1. The 27 July 2008 case study (C1)

For this case study, characterized by the presence of showers
mainly concentrated over the eastern part of the domain (East
Anglia), a series of four experiments were performed. Each
experiment was run for a total of 11 cycles, starting from 0700
UTC and ending at 1700 UTC. Figure 3 shows the synoptic
situation at 0600 UTC and 1800 UTC, corresponding to the
beginning and the end of the experiments, respectively.

Four different configurations of the ensemble system have
been tested for C1 (see Table 2 for a summary). In experi-
ment C1E01, LBCs for the forecast ensemble were provided
by the UK 4 km model, and the inflation factor calculation in-
cluded both aircraft and surface observations (as summarized in
Table 1). Experiment C1E02 differed from C1E01 in using
surface observations only in the inflation factor. Experiments
C1E03 and C1E04 made use of perturbed LBCs from the lower
resolution (24 km grid) North-Atlantic and European (NAE) re-
gional version of the MOGREPS, with both surface and aircraft

Table 2. Summary of experiments for the 27 July 2008 case study
(C1)

Obs source for inflation
Experiment factor calculation LBC

C1E01 Surface, aircraft Deterministic (4 km model)
C1E02 Surface Deterministic (4 km model)
C1E03 Surface, aircraft Perturbed (NAE)
C1E04 Surface Perturbed (NAE)

observations used in the inflation factor for C1E03 and a surface-
observation inflation factor used in C1E04.

3.2. The 26 July 2007 case study (C2)

As discussed in Section 2, predicted observations at given loca-
tions and with given observation errors, determine the analysis
perturbations according to their signal-to-noise ratio. For this
case study, a number of experiments were carried out to inves-
tigate the impact of precipitation on the structure of the ETKF
perturbations as determined by the ensemble transform matrix.
Note that within MOGREPS, the perturbed state variables that
represent the forecast uncertainty are velocity components (u′

and v′), potential temperature (θ ′), specific humidity (q ′) and
Exner pressure (�′). The effects of predicted observations—
including those of precipitation—on forecast uncertainty of
precipitation depends, therefore, on cross-correlations between
ETKF-derived and precipitation perturbations as imposed by the
model.

Our tests were based on the analysis of a rainfall event over
the southern UK, which occurred on 26 July 2007. Figure 4 is
the analogue of Fig. 3, but for 26 July 2007 and Fig. 5 shows the
radar rainfall rate observations over the United Kingdom at 1200
UTC. The area is affected by a cyclone moving towards the north
of Scotland, with a cold front and a warm front meeting at a triple
point over Western England. In the 1800 UTC mean sea-level
pressure chart (not shown), the two fronts are merged into an

Fig. 3. Mean sea-level pressure (in hPa)
analysis chart at 0600 UTC (left panel) and
1800 UTC (right panel) on the 27th July
2008. Courtesy of the Met Office.
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Fig. 4. Mean sea-level pressure (in hPa)
analysis chart at 0600 UTC (left panel) and
1200 UTC (right panel) on 26 July 2007.
Courtesy of the Met Office.

Fig. 5. Surface rainfall rate (in mmh−1) from the radar UK network at
1200 UTC on 26 July 2007. Courtesy of the Met Office.

occluded front over the North Sea. An upper-level split front is
present over South East England. The event is also characterized
by embedded instability and line convection.

As in C1, each ensemble experiment consisted of 11 cycles,
from 0700 UTC to 1700 UTC. Fifteen different configurations
of the ETKF system have been tested for C2 (see Table 3 for a
summary). The first experiment, denoted as experiment C2E01,
did not include predicted observations of precipitation, and made
use of both surface and aircraft observations to determine the in-
flation factor �, as explained in Section 2.1. Also, the boundary
conditions were set to be different for each ensemble forecast
member, and were determined by downscaling an ensemble of
MOGREPS NAE forecasts. As for the experiments in the previ-
ous case study, the ETKF perturbations and the 3DVAR analysis

increments were added to each forecast trajectory at each time
step over a period of an hour—between T − 0.5 and T + 0.5—
by means of the IAU procedure, whereas latent heat and cloud
increments were nudged at each time step between T − 0.5 and
T + 0.5 and between T − 0.25 and T + 0.25, respectively.

Other experiments (C2E08–C2E11) made use of the same
boundary conditions for all ensemble members, which were
determined from the downscaling of the same 4 km horizon-
tal resolution forecast that was used to prescribe the boundary
conditions for the data assimilation experiment. The sensitiv-
ity of the results to the choice of the observations informing
the inflation factor was also tested by removing aircraft obser-
vations from the inflation factor calculations (C2E06–C2E07
and C2E10–C2E11). Furthermore, the effect of cloud and la-
tent heat nudging on the ensemble forecast spread of the surface
precipitation field at T + 1 was determined (C2E12–C2E13).
Experiments were performed with latent heat nudging only act-
ing between T − 0.5 and T + 0.25, and cloud nudging only
between T − 0.25 and T , while keeping T − 0.5 and T +
0.5 as the time interval between successive ETKF and 3DVAR
increments. Finally, the effect of adding the ETKF increments
instantaneously at time T (i.e. without the use of the IAU pro-
cedure) was tested in the case when the nudging time interval
ended at time T for cloud and at T + 0.25 for latent heat profiles
(C2E14–C2E15). The IAU time interval for 3DVAR increments
was kept between T − 0.5 and T + 0.5, as these increments
include large-scale components of the flow, which need to be
filtered for the effect of spurious gravity waves.

The effect on the forecast ensemble of including predicted
precipitation observations in the ETKF was tested on the cases
described earlier. Note that the resolution of the predicted pre-
cipitation observations was usually set to a 15 km × 15 km grid
size, equal to the resolution of the precipitation observations
used for assimilation, except for one experiment (C2E04) where
the resolution of the predicted precipitation observations was set
to 4.5 km × 4.5 km, comparable to the resolution of the origi-
nal radar measurements (i.e. before averaging). The effects of
including predicted precipitation observations corresponding to
larger (i.e. above a given threshold) precipitation observation
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Table 3. Summary of experiments for the 26 July 2007 case study (C2)

Experiment Resolution of Precip error Obs source for inflation LBC Nudging timescale
predicted precip obs factor, c factor calculation

C2E01 n/a n/a Surface, aircraft Perturbed (NAE) Standard

C2E02 15 km 1 Surface, aircraft Perturbed (NAE) Standard
C2E03 15 km 1 Surface, aircraft Perturbed (NAE) Standard

(predicted obs >

1 mmh−1 only)
C2E04 4.5 km 1 Surface, aircraft Perturbed (NAE) Standard
C2E05 15 km 2 Surface, aircraft Perturbed (NAE) Standard

C2E06 n/a n/a Surface Perturbed (NAE) Standard
C2E07 15 km 1 Surface Perturbed (NAE) Standard

C2E08 n/a n/a Surface, aircraft Deterministic (4 km model) Standard
C2E09 15 km 1 Surface, aircraft Deterministic (4 km model) Standard
C2E10 n/a n/a Surface Deterministic (4 km model) Standard
C2E11 15 km 1 Surface Deterministic (4 km model) Standard

C2E12 n/a n/a Surface, aircraft Perturbed (NAE) Reduced
C2E13 15 km 1 Surface, aircraft Perturbed (NAE) Reduced
C2E14 n/a n/a Surface, aircraft Perturbed (NAE) Instantaneous
C2E15 15 km 1 Surface, aircraft Perturbed (NAE) Instantaneous

values (C2E08), as well as the use of a larger precipitation ob-
servation error variance, were also tested (C2E05).

4. Results of the experiments

Here the results of the experiments performed in this work for
the two case studies introduced in Section 3 are presented.

4.1. The 27 July 2008 case study (C1)

4.1.1. The baseline experiment C1E01. Rank histograms
(Talagrand et al., 1997; Hamill, 2001) provide a useful mea-
sure of ensemble spread. Shown in Fig. 6 is a temporal series of
histograms for an ensemble of T + 1 forecasts of surface tem-
perature, u-wind, v-wind and relative humidity corresponding to
experiment C1E01. Note that the effect of observation error was
taken into account by adding to each forecast ensemble member
a random number drawn from a Gaussian distribution with zero
mean and standard deviation equal to 1.1 K (for temperature
observations), 1.2 ms−1 (wind observations) and 6.2% (relative
humidity). These values are all equal to the corresponding stan-
dard deviation value used for variational assimilation, except for
wind data, for which a lower value was used, in accordance with
the error ratio values reported in Table 1. The histograms for
surface temperature seem to show that, at the beginning of the
experiment, a cold bias overpopulates the right extreme ranks.
During the course of the experiment the temperature ensemble
spread becomes more consistent with the spread of the temper-
ature observations, probably owing to an increased value of the
inflation factor (see below for a discussion of the inflation factor)

or to a dependence of the bias on the diurnal cycle. A similar
picture can be observed for relative humidity, except that the
initial moist bias is on the left extreme ranks. The horizontal
wind components both have a fairly flat rank histogram, which
seems to indicate that the ensemble prediction system achieves
a good estimate of the horizontal wind ensemble spread. In the
case of surface pressure, the rank histograms for experiment
C1E01 (Fig. 7, left panel) when the value of the surface pressure
observation error is drawn from an unbiased Gaussian distribu-
tion with standard deviation equal to 100 Pa (consistent with the
corresponding value used for assimilation), seems to show that
the ensemble forecasts are overspread.

4.1.2. Experiment C1E03. A similar result is produced when
the boundary conditions are determined from the nested NAE
MOGREPS ensemble (instead of the fixed boundary conditions
from the 4 km model; Fig. 7, right panel). This insensitivity of
surface pressure spread to boundary conditions may indicate
that the overspreading problem is from elsewhere. It may, for
example, be due to a σ 2

tobs value that is too large, indicating the
need to reduce the error ratio for surface pressure from the value
given in Table 1.

4.1.3. The remaining experiments in C1.. Experiments
C1E01 and C1E02 exhibit similar spread for all observations
(of both surface and aircraft type). The rank histogram results
for the C1E03 and C1E04 ensembles are also fairly similar to
those for C1E01 and C1E02, with minor differences that are
likely to be related to the different temporal behaviour of the
inflation factors (Fig. 8).

4.1.4. Brier skill scores for C1E01. The skill of the fore-
casts produced by these experiments is assessed in Fig. 9 with
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Fig. 6. Rank histograms for surface temperature (first panel), surface u-wind (second panel), surface v-wind (third panel) and surface relative
humidity (fourth panel) produced by C1E01. Cycle hour increases from left to right on each panel, starting at 7Z and ending at 17Z.

respect to observations via the Brier skill score (BSS) (e.g. Wilks,
2006), using the in-sample climatology as a reference. We re-
strict attention to the surface observations, because the spatial
coverage afforded by the aircraft data is poor. Even in the case
of surface data, however, it is difficult to interpret the BSS, as
the surface stations are widely separated. By way of illustration,
the left panel of Fig. 9 shows the BSS produced by C1E01 for
wind speed exceeding its median value at a given time. The
central panel shows the time-dependent median values (solid
line) used as thresholds for the BSS. The right panel shows the
BSS (dashed line) for wind speeds exceeding the climatological
median value of 2.1 ms−1 shown in the central panel (dashed
line) found from 910 observations. Both the left and right panels
show peaks of skill at 1200 UTC and 1500 UTC, but it is only in
the left panel that it is possible to note a trend of increasing skill,
likely to be due to the effect of the inflation factor (Fig. 8, top left
panel) on the ensemble forecast spread. In the right panel, this
effect is masked by the presence of a number of values above
the threshold (i.e. above the median climatological wind speed)
which increases with time.

We note that these results are useful mainly to characterize the
evolution of the skill score during the experiment (thereby jus-
tifying the use of the in-sample climatology) and are not meant
to provide an absolute measure of skill. As a matter of fact, even
if a convective-scale forecast is relatively accurate in predicting
the existence of an observed feature, a score such as the BSS
will be poor if there is a small (subjectively tolerable) error in
the positioning of that feature. In Section 4.2, the validity of the
verification procedure is shown to be enhanced by the relatively
high spatial density of surface precipitation rate observations.

4.2. The 26 July 2007 case study

Given the considerable number of different experiment con-
figurations, results for experiment C2E01—referred to as the
baseline experiment—are discussed extensively, whereas the
differences between the other experiments and the baseline, par-
ticularly regarding the precipitation field, are highlighted briefly.
An in-depth discussion of the statistical characteristics of fore-
cast errors as well as their balance relationships, for a forecast
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Fig. 7. Rank histograms for surface pressure produced by C1E01 (top panel) and by C1E03 (bottom panel) at 17Z.

ensemble valid at 1800 UTC from experiment C2E01, is pre-
sented in Bannister et al. (2011).

4.2.1. The baseline experiment C2E01. As discussed in Sec-
tion 2.1, the ensemble forecast standard deviation at time T is
inflated by a factor � in the hope that, at a later time here chosen

to be T + 1, the variance of the innovations becomes compara-
ble to the variance of the ensemble forecast error in observation
space plus the variance of the observation error. In Fig. 10,
the estimated inflation factor values for experiment C2E01 as a
function of time are shown. Note that, in this case, the initial
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Fig. 8. Inflation factor of experiments C1E01 (first panel), C1E02 (second panel), C1E03 (third panel) and C1E04 (fourth panel): total (solid line),
surface (dotted) and aircraft (dashed).

value of � was set to 1 but, thereafter, both surface and aircraft
observations were used to determine it. In the initial phase of the
experiment, the inflation factor increases with time until about
1100 UTC, when the inflation factor peaks at a value of about 6.
From Fig. 10 it also follows that the innovation variance due to
surface observations shows the need for a larger forecast ensem-
ble spread than in the case of aircraft observations. Results from
experiments when only surface observations are used to inform
the inflation factor are discussed in Section 4.2.3.

To illustrate the geographical distribution of the observational
information available at 1200 UTC, the observation locations
and values of the zonal wind component from surface stations
and aircraft are shown in Fig. 11, together with the location and
values of surface precipitation rate observations from radar.

As for the previous case study, discussed in Section 4.1, rank
histograms were calculated to assess the reliability of the en-
semble spread. Figure 12 shows the rank histogram results for
surface temperature, surface horizontal wind speed components,
surface relative humidity and surface pressure for experiment
C2E01 valid at 1200 UTC. Note that the same values of ob-
servation error standard deviation as in C1E01 were used for
these rank histograms. Figure 12 seems to confirm the results
obtained for C1E01 shown in Figs 6 and 7, as the spread of all
shown variable except surface pressure is fairly flat. The surface

pressure histogram seem to indicate that the surface pressure
forecast ensemble is overspread, possibly due to the use of a
too large surface pressure observation error (see discussion in
Section 4.2).

The T + 1 precipitation rate forecasts for the 1100 UTC cy-
cle, valid at 1200 UTC, from the 23 ensemble members and
the control forecast (denoted as member 0) initialized at 1030
UTC are shown in Fig. 13. Note that, as explained in Section 2,
between 1030 UTC and 1130 UTC the latent heat nudging pro-
cedure forces the precipitation forecasts to converge towards the
radar rainfall observations. Despite this, the precipitation field
for the different ensemble members presents a substantial degree
of variability, which compensates for some of the shortcomings
that are evident in the control forecast, identical to the ‘determin-
istic’ forecast from the previous analysis except for the use of
boundary conditions from the NAE version of MOGREPS. For
example, the control forecast does not capture the heavy rainfall
over the north coast of South West England, while members 2,
3, 4, 6 and 18 show, over this area, levels of precipitation that are
consistent with the spatial distribution and intensity measured
by the radar network (Figs 5 and 11c). This is also the case for
light precipitation events, such as those over the eastern part
of the domain, which are not present in the member-0 forecast
while are captured by a number of other forecasts members,
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Fig. 9. Brier skill score (BSS) with respect to the in-sample climatology (left panel), for horizontal wind speed exceeding the threshold (equal to the
median of the observational distribution at a given time) shown in the middle panel, produced by experiment C1E01. The right panel shows the BSS
for a climatological threshold of 2.1 ms−1, equal to the median of the observational distribution over the whole case study.

Fig. 10. Inflation factor values used within
experiment C2E01, determined by using
surface and aircraft observations (solid line),
surface observation only (dotted line) and
aircraft observation only (dashed line).

particularly by member 11. Finally, various members show ev-
idence of spurious precipitation over the boundaries of the do-
main (e.g. over the eastern and southern boundary). This is likely
to be due to inconsistencies arising from the high nesting ratio
between the horizontal resolution of the outer and the inner
model grid (being equal to 16).

The previous findings can be effectively summarized by
means of (uncalibrated) probability plots, generated by calcu-

lating the number of members that exceed a given precipitation
threshold at a given location and time. Note that in our experi-
ments the probability resolution is equal to about 4%. In Fig. 14,
the probability of occurrence of precipitation greater than 0.125,
1 and 5 mmh−1 are shown, along with the minimum, maxi-
mum and mean precipitation rate value for each location, valid
at 1200 UTC. The great majority of members predicts for the
intense event over the South West of England a precipitation
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Fig. 11. Observations of the zonal component (denoted as u) of the wind vector (in ms−1) from surface stations (panel a) and from aircraft (panel b).
Panel (c) shows rainfall rate observations from the radar UK network (in mmh−1) as in Fig. 5 but after being averaged over a 15 km grid length.
Surface (panel a) and radar (panel c) observations were taken at 1200 UTC whereas aircraft observations (panel b) were taken between 1130 UTC
and 1230 UTC, on 26 July 2007.

greater than 0.125 mmh−1. However, the area where most mem-
bers predict precipitation of higher intensity is relatively small
(as compared to observations).

The ensemble mean forecasts an area over South West Eng-
land with intense precipitation that is similar to that from radar
observations, where the deterministic forecast (member 0 in
Fig. 13) shows more localized events. This is the result of the
fact that different ensemble members predict the same event
over slightly different locations. The precipitation over the sea,
on the eastern part of the domain, is also captured by the ensem-
ble mean, although with less intensity than observed. Finally,
the minimum precipitation field—that is, the field with mini-
mum values of precipitation among all ensemble members—
shows that all members predict precipitation over the western

and southern boundary of the domain, where the flow is advected
into the domain (Fig. 4). This supports the hypothesis that the
predicted precipitation over these areas is an artefact due to the
lower resolution boundary conditions.

A more quantitative analysis of the forecasting performance
of the ensemble system can be achieved, for example, by com-
paring the innovation variance against the ensemble forecast
variance, for the period when the inflation factor has reached
a quasi-stationary value, that is between 1100 UTC and 1700
UTC (Fig. 10). To do this the forecast variances are arranged in
ascending order and divided into a number of bins, each con-
taining the same number of variance and innovation values. The
variances in each bin are averaged, and the root-mean-square
innovation is calculated for each bin. Figure 15 shows the values
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Fig. 12. Rank histograms for surface
temperature (top-left panel), surface u-wind
(top-right panel), surface v-wind
(middle-left panel), surface relative humidity
(middle-right panel) and surface pressure
(bottom-left panel) produced by C2E01 at
1200 UTC.

of T + 1 forecast variance and of root-mean-square innovation
of surface rainfall rate from radar on a 15 km resolution grid for
the 6188 observations available between 1030 UTC and 1730
UTC (a quarter of the total number of 15 km resolution radar
observations available between 1030 UTC and 1730 UTC; Ta-
ble 4). The results for the case when only 5 bins are considered
(asterisks), each bin representing 1237 forecast variances (ex-
cept for the bin with largest variances, which represent 1240
forecast variances), are superimposed on the results for the case
when 20 bins are considered (diamonds), each bin now repre-
senting 309 forecast variances (except for the bin with largest
variances, which represent 317 forecast variances).

As discussed in Section 2.1, when forecast errors are uncorre-
lated with observation errors, innovation variance, σ 2

d, is linearly
related to forecast error variance in observation space, σ 2

f , with
unit gradient and σ 2

f = 0 intercept of the observation error vari-
ance, σ 2

tobs (see eq. 4). From Fig. 15 it appears that a linear
relationship approximates quite well the dependence of forecast
ensemble error variance on innovation variance, although with

a gradient that is less than unity. This could simply be the result
of the use of ensemble variance as an imperfect representation
of the true forecast error variance (see Wang and Bishop, 2003,
their section 8b). As expected, the relationship becomes nois-
ier when the sample size in each bin is smaller (see Wang and
Bishop, 2003, their section 8c). The intercept of the linear fit
between innovation and ensemble variance provides an estimate
of the observation error variance, which resulted to be equal to
0.075 mm1 h−2 for the 5-bin case and to 0.140 mm1 h−2 for the
20-bin case. Based on these results, it was decided to use a value
of 0.1 mm1 h−2 for the observation error variance, to account for
observation error in the evaluation of the skill of the ensemble
prediction system performed in this paper. The distribution of
innovation was investigated to determine whether it was suf-
ficiently well approximated by a Gaussian distribution. To do
so, the sample skewness and kurtosis (with a constant of 3 sub-
tracted) were calculated, for the whole innovation sample (6188
data points), finding values of −1.431 and 9.091, respectively.
Similarly to Pires et al. (2010), these values were compared
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Fig. 13. Ensemble forecasts of surface precipitation rate (in mmh−1) valid at 1200 UTC on 26 July 2007, for experiment C2E01. Member 0 is the
forecast from the previous analysis.

with the mean values of sample skewness and sample kurtosis
obtained for sample of 6188 pseudo-random numbers drawn
from a Gaussian distribution with mean and variance equal to
those of the innovation sample, for an ensemble of 1000 realiza-
tions. Values of −0.001 ± 0.001 for the mean sample skewness
and of −0.005 ± 0.002 were found. This means that the values
of skewness and kurtosis of the innovation sample differ signif-

icantly from the values expected for a sample of the same size
that is normally distributed.

From the above results we conclude that the T + 1 forecast en-
semble standard deviation (also denoted as ‘spread’) for surface
precipitation represents a reasonable estimate of the standard
deviation of the difference between the ensemble mean (in ob-
servation space) and the observations, which is usually taken as
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Fig. 14. Minimum, maximum and mean value over the forecast ensemble (right panels) and probability of occurrence for different threshold values
(left panels) of surface rainfall rate at 1200 UTC on 26 July 2007, for experiment C2E01.

Fig. 15. Scatter plot of innovation variance
against ensemble variance values for
observations and forecasts of surface
precipitation rate valid between 1030 UTC
and 1730 UTC on 26 July 2007 for
experiment C2E01, for a total of 6188 data
point. Diamonds joined by a solid line
represent the results when the data are
binned into 20 bins, while asterisks joined by
a dashed line represent the results when the
data are binned into 5 bins. A reference line
of unit gradient has also been plotted.
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Table 4. Number of observations within every hour centred between 0700 UTC and 1700 UTC on 26 July 2007, that are simulated over the set of
the experiments performed in this work

07 08 09 10 11 12 13 14 15 16 17

Surface pressure 82 83 81 85 83 83 81 82 83 84 84
Surface temperature 42 42 54 54 53 54 40 40 54 53 54
Surface relative humidity 76 77 75 77 76 76 74 75 76 77 77
Surface wind u-component 80 80 90 93 91 92 78 78 93 92 93
Surface wind v-component 80 80 90 93 91 92 78 78 93 92 93
Aircraft temperature 55 54 109 57 24 56 45 37 37 29 63
Aircraft wind u-component 55 54 108 56 24 57 43 37 36 29 63
Aircraft wind v-component 55 54 108 56 24 57 43 37 36 29 63
15 km resolution radar rain rate 3536 3536 3536 3536 3536 3536 3536 3536 3536 3536 3536
15 km resolution radar rain rate 440 590 820 930 1049 973 888 804 676 448 249

>1 mmh−1

15 km resolution radar rain rate 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652
modified nudging interval

15 km res radar rain rate > 1 mmh−1; 320 427 604 682 795 745 665 615 515 369 192
modified nudging interval

4.5 km resolution radar rain rate 44368 44368 44368 44368 44368 44368 44368 44368 44368 44368 44368
4.5 km resolution radar rain rate 5513 6987 9507 11013 12949 12473 10854 9599 8581 6184 3649

>1 mmh−1

an estimate of the skill of the forecast ensemble. However, the
statistically significant deviation from Gaussianity of the inno-
vations decreases the importance of the spread as a predictor
of the skill of the surface precipitation forecast ensemble mean.
This calls for the need to evaluate the performance of an en-
semble of forecasts of precipitation by means of transformed
variables that are normally distributed, although the choice of
which transformation to use is a non-trivial task.

A substantial discrepancy between the magnitude of the ob-
servation error standard deviation inferred from the innovations
using the above procedure and that used within the ETKF was
found: the square root of the former value is only about one third
of the minimum value of precipitation error standard deviation
used in this work for the radar-derived surface precipitation ob-
servations within the ETKF (Section 2.2). However, as discussed
in Section 2.2, the choice for determining the radar-derived sur-
face precipitation observation error standard deviation used in
the ETKF was driven by the need to make the precipitation
innovation distribution more Gaussian, at the cost of introduc-
ing correlations between forecast and observation errors. This
means that our estimate of observation error standard deviation
for precipitation—which assumes observation errors are inde-
pendent of forecast errors—which are used within the ETKF
need not be consistent.

In Fig. 16, the distribution of the observations is compared
with the distribution of the T + 1 forecast ensemble members
for all precipitation observations, through a temporal series of
rank histograms. Note that here the observation error added to
each forecast ensemble member is drawn from a Gaussian dis-
tribution with zero mean and variance equal to 0.1 mm2 h−2.

At the beginning of the experiment, the histograms seem to
show that the forecast error probability sampled by the forecast
ensemble has a larger spread around the mean than the observa-
tion distribution—resulting in an overpopulation of the middle
ranks—and, at the same time, a lower occurrence of extreme
values than the observation distribution, resulting in a overpop-
ulation of the extreme ranks. This may be a consequence of the
forecast error distribution and the observation distribution be-
ing non-Gaussian and of the forecast error distribution having
a smaller kurtosis than the observation distribution. The former
point is consistent with our findings regarding the innovation
distribution. At later times in the experiment, the increasing
magnitude of the inflation factor, Fig. 10, seems to have the ef-
fect of decreasing the occurrence of observations with extreme
values, making the forecast error distribution overspread. It is
interesting to note that these findings seem to be not entirely
consistent with those shown in Fig. 15, where only a minority
of mean ensemble variances are greater than the corresponding
innovation variances. This is likely to be a consequence of the
innovations being non-normally distributed, making the mere
comparison of the innovation variance with the ensemble vari-
ance presented in Fig. 15 inadequate to characterize fully the
skill of the forecast ensemble.

4.2.2. Experiments C2E02, C2E03, C2E04 and C2E05. Here
the results of four different experiments, with configuration iden-
tical to experiment C2E01 except for the inclusion of precipi-
tation data are discussed. Experiment C2E02 includes the use
of 15 km resolution simulated precipitation data for the calcu-
lation of the ensemble transform matrix T. From Table 4 it is
evident that among all observation types considered in the ETKF

Tellus 63A (2011), 3



484 S. MIGLIORINI ET AL.

Fig. 16. Rank histogram for surface precipitation rate forecasts and observations at between 0700 UTC and 1700 UTC on 26 July 2007, for
experiment C2E01.

calculations, rainfall observations from radar are by far the most
numerous.

As shown in Fig. 17, the inflation factor found for experiment
C2E02 is about twice as large as for experiment C2E01 (cf.
Fig. 10), and it takes longer to reach a quasi-stationary value.
Experiments C2E01 and C2E02 still indicate the need for larger
inflation values to explain the variability due to surface observa-
tion data only.

First, the differences in the analysis perturbations between
experiment C2E01 and C2E02 that result from the use of pre-
cipitation data are investigated. The perturbation of the total (i.e.
kinetic plus available potential) energy density with respect to
an isothermal atmosphere at rest is given by (e.g. Bowler et al.,
2008, their eq. 7, modified to consider potential temperature
rather than temperature perturbations)

E = 1

2
ρ0(u′2 + v′2) + RT0ρ0

2κ

θ ′2

θ 2
0

+ RT0ρ0

2γ

p′2

p2
0

, (6)

where T 0 = 300 K, p0 is here the pressure correspond-
ing to the ensemble mean Exner pressure �, θ0 = T0/�

and ρ0 = p0/(RT 0) with R being the specific gas con-
stant. Note that the vertical velocity perturbations have

been neglected as here they are not determined by the
ETKF.

The energy column density perturbation EC—resulting from
the integration of E in the vertical between the bottom and the top
model level by assuming hydrostatic balance—for the ensemble-
mean total energy perturbation at 1200 UTC from experiments
C2E01 and C2E02 are presented in Fig. 18, panels (a) and (b),
respectively. As expected, the results show that the region that
presents the most variability is the part of the domain that is
better observed, mainly inland. To investigate the significance
of the differences in energy between the two experiments, and
to try to relate them to the impact of predicted observations of
precipitation from radar used in the ETKF for C2E02, the en-
ergy difference ECC2E02 − ECC2E01 was calculated (not shown).
Also, the signal-to-noise ratio of predicted observations from
radar—defined as the forecast error standard deviation in obser-
vation space (e.g. interpolated at observation location and time)
divided by the observation error standard deviation—was com-
puted (Fig. 18, panel c). These quantities are closely related to
the singular values of E that appear in the transform matrix T
(eqs. 2 and 3). The interpretation of the energy difference results
is complicated by the effects of the use of different inflation
factors for experiment C2E01 and C2E02, as well as the use of
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Fig. 17. Inflation factor values used within
experiment C2E02, determined by using
surface and aircraft observations (solid line),
surface observation only (dotted line) and
aircraft observation only (dashed line).

Fig. 18. Average total energy column-density perturbation (in J m−2) at 1200 UTC from experiment C2E01 (panel a) and from experiment C2E02
(panel b); radar rain-rate signal-to-noise ratio at 1200 UTC (panel c) and average total energy column-density perturbation normalised difference
(in J m−2) between experiments C2E02 and C2E01 (panel d).
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different initial conditions which may also introduce differences
in the way features from the LBCs are advected into the domain.
An attempt to compensate for these differences was made by
multiplying ECC2E02 with the square of the ratio between the
inflation factor used for C2E01 (equal to 5.04) and that used for
C2E02 (equal to 13.7) at 1200 UTC. This attempt still did not
produce an energy difference with patterns that match panel c
as the new energy difference was dominated by the ECC2E01 val-
ues, whose magnitude are always larger than those of ECC2E01.
This is a result of the cumulative effect of the inflation factor
in time and it is of little use to account only for the different
inflation factor at 1200 UTC. A more meaningful approach is
arguably to first calculate the spatial average of the ECC2E01 and
ECC2E02 values, denoted as ECC2E01 and ECC2E01, respectively.
Then multiply each ECC2E02 value by the ratio ECC2E01/ECC2E02

(equal to 0.755). This procedure effectively scales each C2E03
perturbation such that the energies ECC2E01 and ECC2E01 are the
same. The resulting difference is shown in Fig. 18(d), which we
refer to as the normalized energy difference. The areas where
negative values of the normalized energy difference are found,
roughly correspond to the regions where the signal-to-noise of
radar observations is highest. This is consistent with the expected
effect of the predicted observations from radar on the ensemble
of analysis perturbations for experiment C2E02 (eq. 1), as the
average total energy of the ETKF perturbations is proportional
to the analysis error variance.

In Fig. 19, the 24-member ensemble of precipitation forecasts
valid at 1200 UTC for experiment C2E02 are shown. Except for
the control forecast (which is not affected by the ETKF per-
turbations), each ensemble member presents some differences
from the corresponding member shown for C2E01 in Fig. 13.
This is the result, valid at one-hour forecast lead time, of using
eq. (1) at 1100 UTC with a different T matrix. However, this
cannot be taken as an indication of differences in the informa-
tion contained in the two forecast ensembles, given that T is not
unique, as the analysis error covariance is invariant when T is
multiplied on the right by an arbitrary orthonormal matrix (e.g.
Sakov and Oke, 2008). A more meaningful way to investigate
this aspect is to compare the characteristics of the probabil-
ity distribution of precipitation forecast error at a given time
for experiments C2E01 and C2E02. By comparing Fig. 14 for
C2E01 with Fig. 20 for C2E02 it is possible to see that the areas
having probability greater than 50% of being affected by precip-
itation with intensity greater than 0.125 mmh−1 are quite similar
between the two experiments. However, areas having probabil-
ity greater than 90% to be affected by precipitation intensity
greater than 0.125 mmh−1 are larger in the case of experiment
C2E02, and for these locations the radar shows presence of rain.
Also, experiment C2E02 shows larger areas with zero probabil-
ity of precipitation greater than 1 mmh−1 over the South East
of England, where the radar measurements show no precipita-
tion or precipitation lower than 1 mmh−1. Figure 21 shows the
rank histograms for forecasts of precipitation rates for C2E02.

Comparing Figs 16 (for C2E01) and 21 though, shows that the
inclusion of simulated precipitation observations does not pro-
duce any substantial improvement in the skill of precipitation
forecasts.

Motivated by the results obtained in experiment C2E02, we
decided to perform an experiment (denoted as C2E03) where the
ensemble transform matrix included information from surface
and aircraft data and from simulated precipitation data corre-
sponding to precipitation observations with intensity greater than
1 mmh−1 only. However, an inspection of the rank histograms for
C2E03 (not shown) produced no evidence of significant changes
due to the effect of discarding low or zero precipitation inten-
sity observations with respect to the baseline experiment: the
only differences are reasonably due to the use of different ran-
dom numbers to account for observation error in the two rank
histograms.

It is also interesting to check the sensitivity of our results
on the spatial resolution of predicted precipitation data used in
the ETKF. As explained in Section 2, the radar data that are
used within the latent-heat nudging scheme are presented on
a 15 km resolution grid, while their original resolution is nine
times higher. A new experiment, denoted as C2E04, was de-
vised to study the effects of using predicted precipitation data
in the ETKF at a 4.5 km resolution, achieved by averaging the
original model precipitation field over a 3 × 3 grid box for each
ensemble member. For this experiment, at each ETKF cycle,
11 092 predicted precipitation observations are considered. The
rank histogram results for C2E04 (Fig. 22) show a larger fore-
cast bias for high intensity precipitation observations between
0900 UTC and 1300 UTC, with respect to C2E01. This larger
bias may simply be an effect of an insufficient inflation factor
before 1300 UTC, when the inflation factor reaches his peak
value of about 60, from an initial value of the order of one at
0700 UTC. Note, incidentally, that the need for such a large
inflation factor (about four times the peak value for experiment
C2E02) may arise from the use of too few ensemble members to
represent the distribution of forecast errors in observation space,
compared to the rank of the observation error covariance matrix
(eq. 3).

From eqs (1) and (2) it follows that when � is the zero ma-
trix, the analysis ensemble coincides with the forecast ensemble
(assuming � = 1). From eq. (3) it is possible to see that this
happens when forecast error variances in observation space are
negligible with respect to observation error variances, when pro-
jected along the directions of the right singular vectors of E. This
means that, for a given forecast spread, the larger the observation
error variance, the closer the analysis error is to forecast error
spread.

From the above discussion it follows that the initial condi-
tion ensemble spread determined by the ETKF is sensitive to the
magnitude of the observation error variance. As from eq. (5), the
precipitation observation error standard deviation is determined
by means of an empirical coefficient c, set initially equal to 1. A
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Fig. 19. Ensemble forecasts of surface precipitation rate (in mmh−1) valid at 1200 UTC on 26 July 2007, for experiment C2E02. Member 0 is the
forecast from the previous analysis.

new experiment, denoted as C2E05, was designed to investigate
the sensitivity of the ensemble forecast spread to the character-
istics of precipitation observation error. For this experiment, a
value of c = 2 was chosen. However, over the whole duration of
the experiment, a doubling of the precipitation observation error
standard deviation seems not to change significantly the shape
of the forecast error distribution with respect to the observation

distribution. This can be seen from the series of rank histograms
for experiment C2E05 (not shown), where, for consistency with
the previous case-2 experiments, the variance of the random
observation error added to the forecast ensemble for the rank
histograms was kept equal to 0.1 mm2 h−2.

The results for the experiments presented in this section can
be summarized in a quantitative manner by means of the Brier
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Fig. 20. Minimum, maximum and mean value over the forecast ensemble (left panels) and probability of occurrence for different threshold values
(right panels) of surface rainfall rate at 1200 UTC on 26 July 2007, for experiment C2E02.

Score (BS) for precipitation. A lower BS indicates a better set
of ensemble forecasts. The BS results for events defined by the
occurrence of observations with precipitation rate greater than
0.0, 1.0 and 5.0 mmh−1 for experiment C2E01 are shown in
Fig. 23. The score for the 0.0 mmh−1 precipitation rate ob-
servations threshold improves (i.e. decreases) during the ex-
periment, consistently with a improvement seen also in other
indicators, such as the rank histogram results. This improve-
ment during the experiment is ‘robust’, given that it happens
when more observations measure precipitation, that is when the
rain band starts crossing the domain. The results found for the
BS at higher thresholds may seem surprising: the larger the
threshold, the better the score. However, this result is likely
to be a consequence of the relative scarcity of precipitation
observations of moderate or high intensity, so that the BS for
higher thresholds is dominated by the results for non-occurring
events.

Given that we are here interested in determining the effect on
forecast skill of including precipitation in the ETKF calculations,
it is useful to define a precipitation skill score (denoted as PSS)

as

PSSij = 1 − BSC2E0i

BSC2E0j

(7)

for experiment C2E0i, calculated with respect to the BS for
experiment C2E0j. Note that perfect forecasts imply BSC2E0i =
0 and PSSij = 1, when observation error is not considered.

The PSS results for experiments C2E02, C2E03, C2E04 and
C2E05 with respect to C2E01, shown in Fig. 24 for a 0.0 mmh−1

precipitation threshold, indicate a limited impact on forecast
skill of the precipitation data used within the ETKF calcula-
tions. The temporal variations of skill are very similar in the
case of experiments C2E02, C2E03 and C2E05, with variations
confined between ±10%. Worse results are obtained for ex-
periment C2E04—where the number of simulated precipitation
observations is more than 12 times larger than for the other three
experiments—especially between 0900 UTC and 1300 UTC,
consistently with the rank histogram results comparison between
experiments C2E04 and C2E01. Finally, the PSS results for a
1.0 mmh−1 threshold (not shown) show a consistently lower skill
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Fig. 21. Rank histograms for surface precipitation rate forecasts and observations between 0700 UTC and 1700 UTC on 26 July 2007, for
experiment C2E02.

Fig. 22. Rank histograms for surface precipitation rate forecasts and observations between 0700 UTC and 1700 UTC on 26 July 2007, for
experiment C2E04.
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Fig. 23. Brier score results for experiment
C2E01, for precipitation events with
intensity greater than 0.0 (solid line), 1.0
(dashed line) and 5.0 (dash-dot line) mmh−1

(left-hand panel); number of precipitation
events (%) in experiment C2E01 with
intensity greater than 0.0 (solid line), 1.0
(dashed line) and 5.0 (dash-dot line) mmh−1

(right-hand panel).

Fig. 24. Precipitation skill score (PSS,
defined in eq. 7) with respect to experiment
C2E01, for zero precipitation intensity
threshold, for experiment C2E02 (top-left
panel), C2E03 (top-right panel), C2E04
(bottom-left panel) and C2E05 (bottom-right
panel).

for each experiment, with respect to that for zero precipitation
threshold. Similar results are obtained for a 5.0 mmh−1 thresh-
old (not shown), with the exception of experiment C2E04, which
proves to be more skilful at this threshold than at the two lower
ones, before 1200 UTC. However, this surprising higher skill
of C2E04 for the higher precipitation threshold (at odds with
the rank histogram results shown in Fig. 22) may merely be the
effect of better (i.e. lower) Brier score results for non-occurring
events: the quadratic nature of the Brier score makes the score
12 times smaller for 12 times more events with the same forecast
probability of occurrence

4.2.3. Experiments C2E06 and C2E07. As discussed in Sec-
tions 4.2.1 and 4.2.2, from Figs 10 and 17 it is possible to see a
clear dependence of the inflation factor magnitude on the type
of observation that is used to determine the inflation. It is inter-

esting to check the forecast performance when only surface data
are used to calculate the inflation factor, both in the case when
no precipitation is used in the ETKF (experiment C2E06) and
when predicted precipitation observations are included in the
ensemble transform matrix calculations (experiment C2E07).

In Fig. 25, the inflation factor values for experiments C2E06
and C2E07 are shown. As expected, the inflation factors obtained
when only surface data are taken into account are very similar
to those shown in Figs 10 and 17 in the case when only surface
data are considered at each given time.

To determine the impact of using the surface-observation-
based inflation factor, the PSS results for experiment C2E07
were calculated with respect to experiment C2E01 and C2E06,
which are shown in Fig. 26. The results are very similar in the
two cases, and also similar to the PSS results for C2E02 with
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Fig. 25. Inflation factor values used within experiments C2E06 (left panel) and C2E07 (right panel), determined by using surface observations.

Fig. 26. Precipitation skill score of
experiment C2E07, with respect to
experiments C2E01 (left-hand panel) and
experiment C2E06 (right-hand panel).

respect to C2E01, so that no evident benefit is experienced owing
to the use of a larger inflation factor.

4.2.4. Experiments C2E08, C2E09, C2E10 and C2E11. As
summarized in Table 3, these experiments are all characterized
by the use of the same boundary conditions at a given time, for all
ensemble members. The boundary conditions are derived from
forecasts on a 4 km resolution grid over the whole UK with a
15-min temporal resolution, updated every 6 h. In Fig. 27, the BS
for precipitation events with intensity greater than 0.0 mmh−1

for these experiments is shown, along with the same BS for
experiment C2E01. Except for the 0800 UTC case, when the BS
for C2E08 and C2E10—which do not include precipitation data
in the ETKF calculations—is slightly lower, the precipitation
forecast skill when higher resolution and deterministic boundary
conditions are used in the simulations is lower than in the case of
the baseline experiment. Consistently, between 1100 and 1500
UTC the PSS values for C2E09 with respect to C2E01 (Fig. 28,
left panel) are substantially lower than those for experiments that

Fig. 27. Brier score for precipitation events with intensity greater than
0.0 mmh−1, for experiments C2E01 (solid line), C2E08 (dotted line),
C2E09 (dashed line), C2E10 (dash-dotted line) and C2E11
(dash-triple-dotted line).
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Fig. 28. Precipitation skill score of
experiment C2E09, with respect to
experiments C2E01 (left-hand panel) and
experiment C2E08 (right-hand panel).

make use of perturbed boundary conditions. Not surprisingly,
PSS values for C2E09 with respect to C2E08 (Fig. 28, right
panel) are instead similar to those for C2E02 with respect to
C2E01.

A possible explanation for the decrease of skill experienced
when deterministic boundary condition are used for the case
study under investigation, can be inferred from the inspection
of Figs 14 and 29. Compared to experiment C2E01, experiment
C2E08 shows over South West England larger areas with zero
probability of precipitation with intensity greater than 1.0 and
5.0 mmh−1, where instead the radar indicates the presence of
intense rainfall (Fig. 5). At the same time, experiment C2E08
shows over the north eastern corner of the domain larger areas
with non-zero precipitation probability with intensity greater
than 5 mmh−1, where the radar measures only light precipitation.

It is interesting to check whether the regions affected by rain,
located in close proximity of the boundaries of the simulation
domain, that can be seen in Figs 13, 14, 19 and 20, are still
present in the case of one of the 4 km boundary condition exper-
iment, such as C2E08. By comparing the 0.125 mmh−1 threshold
precipitation probability values shown in Figs 14 and 29, it is
possible to see that experiment C2E08 assigns zero precipitation
probability on most of the region close to the west boundary of
the domain. Over the same location, experiment C2E01 shows
localized region with 100% probability of rainfall with inten-
sity greater than the threshold. This confirms the conjecture that
these features are artefacts due to the large resolution difference
of the boundary conditions used in the two experiments and sug-
gests that the resolution ratio of the nested model grids should
relatively small. On the other hand, experiment C2E08 is char-
acterized by having a larger proportion of features, mainly in
the southwest part of the domain, that have a 100% probability
of precipitation above a given threshold. This may indicate that

the features are being advected into the interior of the domain
through the use of the same boundary conditions.1

4.2.5. Experiments C2E12, C2E13, C2E14 and C2E15. It
might be argued that the effect of latent heat and cloud nudg-
ing on each member of the forecast ensemble may reduce the
impact of including predicted precipitation observations in the
ETKF. As a result of the latent heat nudging procedure, the
vertical latent heat profile ensemble at a given time is scaled
according to the ratio between the surface precipitation rate
from observations and from the model. The result of the cloud
nudging procedure is instead the forcing of the model relative
humidity—through the addition of a forcing term to the specific
humidity prognostic equation—towards relative humidity fields
from a set of observations (Dixon et al., 2009). As discussed in
Section 3, in the experiments described so far, a given ensemble
forecast valid at time T + 1 is constrained by the cloud nudg-
ing procedure up to T + 0.25 and by the latent heat procedure
up to time T + 0.5. This means that the specific humidity and
the potential temperature—which affect the vertical velocity and
consequently precipitation—evolve in an unconstrained fashion
(and, potentially, increase spread) only during the last 45 and 30
min in the forecast, respectively.

In experiment C2E12 and C2E13, the cloud and latent heat
nudging was stopped at time T and time T + 0.25, respectively.2

In Fig. 30, the PSS values for experiment C2E13 with respect

1 Note that the use of the same LBCs is also responsible for the very
high (if not 100%) precipitation probability at the northern and eastern
boundary of the domain (especially for the 0.125 mmh−1 threshold).
2 It was decided to keep using the radar observations at time T , which
nudge the model latent heat for the following 15 min, so as to be able to
compare precipitation forecasts and observations at time T , as done for
the previous experiments.
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Fig. 29. Minimum, maximum and mean value over the forecast ensemble (left panels) and probability of occurrence for different threshold values
(right panels) of surface rainfall rate at 1200 UTC on 26 July 2007, for experiment C2E08.

Fig. 30. Precipitation skill score of
experiment C2E13, with respect to
experiments C2E01 (left-hand panel) and
experiment C2E12 (right-hand panel).
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Fig. 31. Precipitation skill score of experiment C2E15, with respect to experiments C2E01 (left-hand panel), experiment C2E12 (middle panel) and
experiment C2E14 (right-hand panel).

to experiments C2E01 and C2E12 are shown. Results are fairly
similar to those obtained for previous experiments, the only no-
table difference being a slight increase of skill at 1400 UTC.
Also, the modified nudging period does not produce evidence
of improvements in precipitation forecast skill for precipitation
threshold of 1.0 and 5.0 mmh−1 (not shown). The lack of sen-
sitivity of the spread of precipitation forecasts at T + 1 on
the duration of the latent heat nudging period is surprising. A
shorter nudging period not only increases the period over which
the evolution of specific humidity and potential temperature is
unconstrained, but arguably also increases the degree of imbal-
ance in the model fields, as the standard nudging implementation
used at the Met Office constrains only the mass fields (namely,
specific humidity and potential temperature) without adjusting
the momentum fields. (When hydrostatic balance holds, a con-
sistent coupling between corrections to the mass fields and to
the wind fields is important for the prediction of precipitation
even at high resolution, see e.g. Pagé et al., 2007) A possible ex-
planation for this behaviour is that the length of the time interval
needed to adjust the momentum field due to changes in the mass
field is significantly shorter than the time interval during which
the model state evolves in an unconstrained fashion.

Finally, in experiment C2E14 and C2E15, the modified nudg-
ing period was used in conjunction with the instantaneous addi-
tion at time T of the ETKF increments. As discussed in Section
3, for the experiments presented so far it was decided to avoid
the introduction of relatively large discontinuities in the fields
as a result of the addition of the ETKF increments to the model

forecasts, so as to minimize the possibility of introducing spu-
rious inertia-gravity waves in the subsequent model forecasts.
On the other hand, this meant that the ETKF increments were
not fully added to the forecast ensemble until T + 0.5, thereby
leading to a potential reduction of the spread that could be oth-
erwise achieved at verification time T + 1, in the case when the
increments were added more quickly, if not instantaneously. We
decided to test this possibility by means of experiments C2E14
and C2E15, where the ETKF increments were added instanta-
neously. In Fig. 31, the precipitation skill score values for exper-
iment C2E14 with respect to experiments C2E01 and C2E13 are
shown. The PSS scores with respect to BSC2E01 and BSC2E12 are
for experiment C2E15 consistently worse than the same scores
obtained for experiment C2E13 (shown in Fig. 30), whereas
the precipitation skill for experiment C2E15 with respect to the
similarly configured experiment C2E14 is comparable to that
obtained with other experiment configurations.

5. Summary and Conclusions

In this paper, an experimental ensemble prediction system for
nowcasting purposes based on a convection-permitting version
of the UM with a 1.5 km grid length over the southern UK
is presented. An initial assessment of the performance of the
system based on two summer time case studies is provided. The
first case study is mainly devoted to assessing forecast spread as
determined by the forecast ensemble, for a set of surface fields
(namely, temperature, horizontal wind, relative humidity and
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pressure). Our results show that, as the ETKF cycles progress, the
forecast error distributions estimated by the forecast ensemble at
lead times T + 1 become fairly consistent with the distribution
of the innovations valid at the same time. This is a result of the
forecast-error-variance-enlarging effect of the inflation factor.
Problems still remain with the surface pressure forecast spread,
which seems to be too large. However, this may simply be a
consequence of assuming a surface pressure observation error
variance which is too large. In light of this a more thorough
validation of the ensemble system, presently ongoing, is needed
to provide a more confident assessment of the ensemble forecast
system.

The second case study is focused on investigating the surface
precipitation forecast skill of the system and the effects of in-
cluding predicted observations of precipitation in the calculation
of the ensemble transform matrix T for an ETKF at convective
scales. First, the 1-h precipitation forecast skill of the ‘baseline’
experiment C2E01 (defined in Table 3), which does not include
predicted precipitation observations in the ETKF calculations,
was evaluated. An analysis of the different precipitation forecast
patterns that are characteristic of the different forecast ensemble
members clearly shows the advantages of a probabilistic now-
casting perspective in terms of its ability to provide non-null
probability of occurrence of precipitation at a given time T , over
regions where it is possible to observe precipitation at the same
time. However, there is also some evidence of spurious precip-
itation at the boundaries of the forecasting domain, which calls
for the need to keep the nesting ratio between the lower resolu-
tion and the limited-area higher resolution models as small as
possible. A more quantitative indicator of forecast skill can be
determined by comparing the one-hour lead time forecast error
variance with the innovation variance for precipitation inten-
sity, after that the inflation factor has reached a quasi-stationary
value. The comparison shows that the T + 1 ensemble stan-
dard deviation (denoted as ‘spread’) for surface precipitation
provides a good estimate of the standard deviation of the dif-
ference between ensemble mean forecast (in observation space)
and the observations (denoted as ‘skill’). However, evidence of
non-normally distributed precipitation forecast errors makes this
result less robust. As a matter of fact, the inspection of the rank
histograms seem to provide evidence of precipitation forecast
error with spread that is too large.

The effects of the inclusion of predicted observations of pre-
cipitation intensity from radar within the predicted observation
categories used to constrain the initial forecast error distribution
were investigated for different experimental configurations. Ex-
periment C2E02 shows that the inflation factor required to get
realistic T + 1 precipitation forecast spread in the presence of
predicted precipitation observations is about twice as large as
that needed when only predicted surface and aircraft observa-
tions are considered in C2E01. In other words, the increase of
the number of predicted observations in the ETKF due to the
inclusion of predicted precipitation observations provides a sig-

nificantly worse estimate of T + 1 precipitation forecast spread,
which requires an inflation factor about twice as large.

As expected, the ensemble-mean total energy column densi-
ties obtained with and without the inclusion of predicted precip-
itation observations at 1200 UTC show small scale variability
in correspondence of the observation locations, as well as fea-
tures advected into the domain from the LBCs or originating
from the use of different initial conditions and inflation factor
values. Also, the normalized difference (i.e. adjusted to account
for the different spatial average of the energy column densi-
ties) between the C2E02 and C2E01 energy column densities
is negative over locations where the observation signal-to-noise
ratio is highest. This can be explained with the effect of pre-
dicted precipitation observations on reducing the analysis error
variance, which is proportional to the average energy perturba-
tions. A qualitative inspection of precipitation probability maps
obtained at 1200 UTC shows that the use of predicted precipi-
tation observations gives rise to more locations with very high
probability of rain that are affected by precipitation with inten-
sity greater than 0.125 mmh−1. Also, we found some evidence
of better performance of the forecast ensemble when perturbed
boundary conditions are used, especially with a low nesting ra-
tio. However, a detailed analysis of a number of skill indicators
for the experiments described in Table 3 seems to indicate that
no definite skill improvement for T + 1 probabilistic forecasts
at convective scale is achieved when predicted precipitation ob-
servations are included in the ETKF formulation. From eq. (3)
it follows that this finding is likely to be due to the detrimen-
tal effects of sampling noise associated with the use of too few
ensemble members, resulting in a rank-deficient representation
of the square root of the forecast error covariance matrix in
observation space. To produce the hoped improvement in skill
deriving from the use of radar data it is of paramount importance
the rebalancing of the ratio between the number of predicted ob-
servations and number of ensemble forecast members used in
the ensemble prediction system.
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Pagé, C., Fillion, L. and Zwack, P. 2007. Diagnosing summertime

mesoscale vertical motion: implications for atmospheric data assimi-
lation. Mon. Wea. Rev. 135, 2076–2094.

Park, S. K. and Droegemeier, K. K. 2000. Sensitivity analysis of a 3D
convective storm: implications for variational data assimilation and
forecast error. Mon. Wea. Rev. 128, 140–159.

Pires, C. A., Talagrand, O. and Bocquet, M 2010. Diagnosis and im-
pacts of non-Gaussianity of innovations in data assimilation. Phys. D:

Nonlinear Phenom. 239, 1701–1717.
Sakov, P. and Oke, P. R. 2008. Implications of the form of the ensemble

transformation in the ensemble square root filters. Mon. Wea. Rev.

136, 1042–1053.
Stensrud, D. J., Xue, M., Wicker, L. J., Kelleher, K. E., Foster, M.

P. and co-authors. 2009. Convective-scale warn-on-forecast system.
Bull. Amer. Meteor. Soc. 90, 1487–1499.

Sun, J. 2005. Convective-scale assimilation of radar data: progress and
challenges. Quart. J. Roy. Meteor. Soc. 131, 3439–3463.

Talagrand, O., Vautard, R. and Strauss, B. 1997. Evaluation of proba-
bilistic prediction systems. In: Proceedings, ECMWF Workshop on

Predictability, Shinfield Park, Reading, UK, 1–25.
Tong, M. and Xue, M. 2008. Simultaneous estimation of microphysi-

cal parameters and atmospheric state with radar data and ensemble
Kalman filter. Part I: Sensitivity analysis and parameter identifiability.
Mon. Wea. Rev. 136, 1630–1648.

Wang, X. and Bishop, C. H. 2003. A comparison of breeding and en-
semble transform Kalman filter ensemble forecast schemes. J. Atmos.

Sci 60, 1140–1158.
Wang, X., Bishop, C. H. and Julier, S. J. 2004. Which is better, an

ensemble of positive-negative pairs or a centered spherical simplex
ensemble?. Mon. Wea. Rev. 132, 1590–1605.

Wilks, D. S. 2006. Statistical Methods in the Atmospheric Sciences, 2nd
edition, Volume 59. International Geophysics Series. Academic Press.

Wilson, D. R. and Ballard, S. P. 1999. A microphysically based pre-
cipitation scheme for the UK Meteorological Office Unified Model.
Quart. J. Roy. Meteor. Soc. 131, 1607–1636.

Tellus 63A (2011), 3


