12 research outputs found

    Physiological and Biochemical behaviours and antioxidant response of Helianthus annuus under Lanthanum and Cerium Stress

    Get PDF
    The continuous progress of global manufacturing and anthropogenic activities has resulted in excessive environmental metallic pollution, particularly with rare earth elements (REEs) which have become a prevalent issue of global concern due to their high toxicity and widespread existence. REEs-contaminated soils could ruin agriculture by inducing plant physiology disturbances in various crops that are considered the principal link of the human food chain. The main purpose of the present work is to assess the phytotoxicity of two light REEs, lanthanum (La) and cerium (Ce), in Helianthus annuus after 14 days of exposure to different concentrations of La and Ce (0, 1, 2.5, 5, and 10 µM). Plants showed different variations in shoot and root lengths at the end of the trial period. The accumulation of photosynthetic pigments, such as chlorophylls and carotenoids, as well as the photosynthetic efficiency, the non-photochemical quenching, the photosynthetically active radiation, and the electron transport rate, increased in the two REE treatments. Hydrogen peroxide significantly increased in all applied concentrations of La and Ce. A significant increase in malondialdehyde content was noticed only when plants were exposed to 2.5 µM La and 10 µM Ce. Results also demonstrated that La and Ce induced an increase in the activity of superoxide dismutase, peroxidase, and catalase (only the highest concentration of La decreased catalase activity). The exposure to different REE concentrations induced the accumulation of La and Ce in the plants, mainly in roots. Helianthus annuus showed an effective resistance behaviour facing La- and Ce-induced stresses

    Barium effect on germination, plant growth, and antioxidant enzymes in Cucumis sativus L. plants

    Get PDF
    Barium (Ba) is a nonessential element that can cause several deleterious effects in most organisms. Elevated Ba concentrations can be toxic for plants and may affect growth and disturbances in homeostasis. This study aimed to evaluate the Ba stress, the plant-tolerance limits, and the detoxification strategy adopted by Cucumis sativus L. The effect of Ba on seed's germination and vegetative development of this species was evaluated. For germination test, different Ba concentrations were used (0, 200, 500, 1,000, and 2,000 μM). Results showed that germination was stimulated with 500 and 2,000 µM of Ba. The toxicity effect on plant development was studied by treating the plants with increasing doses of Ba (100, 200, 300, and 500 μM) during 45 days. Shoot and root dry biomass production decreased significantly with elevated Ba concentrations, although water content enhanced in the roots. The concentration of Ba, 500 µM, induced high Ba accumulation in shoots and roots (9 times higher than in the control plants). Moreover, results showed that catalase, guaiacol peroxidase, and ascorbate peroxidase activities were stimulated in the different tissues of cucumber plants which highlight the occurring of an oxidative damage through Ba treatments and the involvement of the plant enzymatic antioxidant defense system

    Light-dark O2 dynamics in submerged leaves of C3 and C4 halophytes under increased dissolved CO2: clues for saltmarsh response to climate change

    Get PDF
    Waterlogging and submergence are the major constraints to which wetland plants are subjected, with inevitable impacts on their physiology and productivity. Global warming and climate change, as driving forces of sea level rise, tend to increase such submersion periods and also modify the carbonate chemistry of the water column due to the increased concentration of CO2 in the atmosphere. In the present work, the underwater O2 fluxes in the leaves of two abundant Mediterranean halophytes were evaluated at different levels of dissolved CO2. Photosynthetic enhancement due to increased dissolved CO2 was confirmed for both Halimione portulacoides and Spartina maritima, probably due to high tissue porosity, formation of leaf gas films and reduction of the oxygenase activity of Rubisco. Enhancement of the photosynthetic rates in H. portulacoides and S. maritima was concomitant with an increase in energy trapping and transfer, mostly due to enhancement of the carboxylation reaction of Rubisco, leading to a reduction of the energy costs for carbon fixation. Transposing these findings to the ecosystem, and assuming increased dissolved CO2 concentration scenarios, the halophyte community displays a new ecosystem function, increasing the water column oxygenation and thus reinforcing their role as principal primary producers of the estuarine system

    Effects of Salt Stress on Three Ecologically Distinct Plantago Species

    Full text link
    Comparative studies on the responses to salt stress of taxonomically related taxa should help to elucidate relevant mechanisms of stress tolerance in plants. We have applied this strategy to three Plantago species adapted to different natural habitats, P. crassifolia and P. coronopus both halophytes and P. major, considered as salt-sensitive since it is never found in natural saline habitats. Growth inhibition measurements in controlled salt treatments indicated, however, that P. major is quite resistant to salt stress, although less than its halophytic congeners. The contents of monovalent ions and specific osmolytes were determined in plant leaves after four-week salt treatments. Salt-treated plants of the three taxa accumulated Na+ and Cl- in response to increasing external NaCl concentrations, to a lesser extent in P. major than in the halophytes; the latter species also showed higher ion contents in the non-stressed plants. In the halophytes, K+ concentration decreased at moderate salinity levels, to increase again under high salt conditions, whereas in P. major K+ contents were reduced only above 400 mM NaCl. Sorbitol contents augmented in all plants, roughly in parallel with increasing salinity, but the relative increments and the absolute values reached did not differ much in the three taxa. On the contrary, a strong (relative) accumulation of proline in response to high salt concentrations (600 800 mM NaCl) was observed in the halophytes, but not in P. major. These results indicate that the responses to salt stress triggered specifically in the halophytes, and therefore the most relevant for tolerance in the genus Plantago are: a higher efficiency in the transport of toxic ions to the leaves, the capacity to use inorganic ions as osmotica, even under low salinity conditions, and the activation, in response to very high salt concentrations, of proline accumulation and K+ transport to the leaves of the plants.MAH was a recipient of an Erasmus Mundus pre-doctoral scholarship financed by the European Commission (Welcome Consortium). AP acknowledges the Erasmus mobility programme for funding her stay in Valencia to carry out her Master Thesis.Al Hassan, M.; Pacurar, AM.; López Gresa, MP.; Donat Torres, MDP.; Llinares Palacios, JV.; Boscaiu Neagu, MT.; Vicente Meana, Ó. (2016). Effects of Salt Stress on Three Ecologically Distinct Plantago Species. PLoS ONE. 11(8):1-21. doi:10.1371/journal.pone.0160236S12111

    Accumulation potential of Atriplex halimus to zinc and lead combined with NaCl: Effects on physiological parameters and antioxidant enzymes activities

    No full text
    An experiment in this study was designed to investigate the effect of different concentrations of Zn2+ or Pb2+ (0, 200, 400 and 600 μM) with NaCl (0, 200 mM), on the morphological and physiological parameters as well as the antioxidative response of the halophytic species Atriplex halimus. Results showed that Pb2+ had no significant impact on biomass production while Zn2+ significantly affected plant development mainly at high concentration, 600 μM. Total chlorophyll content did not change significantly under elevation concentrations of Zn2+ when compared to control. However, there was a modest decrease in total chlorophyll concentration in the leaves of A. halimus grown in a medium supplemented with 600 μMPb2+ and with combined stress Pb2+/NaCl. Zn2+ and Pb2+ contents in tissues were higher in the belowground organs of this halophyte. Overall results pointed out that application of different concentrations of Zn2+ or Pb2+ disturbed status of nutrients in A. halimus. Analysis of antioxidant enzymes [ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and catalase (CAT)] showed that the activity was diminished by increasing Zn2+ concentrations in the medium. Whereas, the addition of Pb2+ in the medium increased CAT activity and decreased APX activity.info:eu-repo/semantics/publishedVersio

    Revisiting the outwelling hypothesis: Modelling salt marsh detrital metal exports under extreme climatic events

    No full text
    The Tagus estuary is a mesotidal estuary located on the Western Portuguese coast, and is characterized by large areas of saltmarshes (17.24 km2) and tidal flats distributed along the margins. Halophyte vegetation in this system concentrates heavy metals during the growing season and subsequently releases these metals to the environment following senescence. Although there currently there are no metal discharges to the estuary, this was not true in the past, and there are still large amounts of legacy metals within the system. The results presented here show that marshes in the Tagus estuary, can export metal contaminants at the rate of 162 Zn kg m2 y−1, 26 Cu kg m2 y−1, 28 Pb kgm2 y−1 and 1 Cd kgm2 y−1. Eddies are generated inside the estuary during frequente flood events, enhancing erosion and transport of particles. During neap tide periods plant detritus is mostly retained in the inner estuary in the vicinity of the marsh source; during spring tides, however, export to the main channel and to the ocean is significantly increased. Sea level rise (SLR) and/or expected increase in the frequency of flood eventswill increase detritalmovementwithin the estuary and discharges of metal contaminated particles to the ocean shelf. This research highlights the capacity of the present estuary tomoderate fluxes of legacymetals to the ocean, but also calls for efforts to reduce present contaminant inputs fromthewatershed to mitigate contaminant transport to the ocean in the future.info:eu-repo/semantics/publishedVersio

    Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels

    No full text
    Environmental pollution by trace metal elements (TMEs) is a serious problem worldwide, increasing in parallel with the development of human technology. The present research aimed to examine the response of halophytic species Suaeda fruticosa to oxidative stress posed by combined abiotic stresses. Plants have been grown for 1 month with an irrigation solution supplemented with 200 mM NaCl and 400 μM Cd2+ or 400 μM Cu2+. The level of glutathione (GSH), phytochelatins (PCs), and antioxidant enzyme activities [ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and catalase (CAT)] as well as lipid peroxidation was studied to see the stress exerted by the TME and the level of tolerance and detoxification strategy adopted by S. fruticosa. Relative growth rate (RGR) decreased under Cd2+ stress in this species, whereas Cu2+ did not have any impact on S. fruticosa performance. Cd2+ or Cu2+ enhanced malondialdehyde, suggesting reactive oxygen species-induced disruption of membrane integrity and oxidative stress in S. fruticosa. On the other hand, the activities of the antioxidant enzymes CAT, APX, and GPX diminished and mineral nutrition was disturbed by metal stress. S. fruticosa was able to synthesize PCs in response to TME toxicity. However, data indicate that GSH levels underwent a significant decrease in roots and leaves of S. fruticosa stressed by Cd2+ or Cu2+. The GSH depletion accompanied by the increase of phytochelatin concentration suggests the involvement of GSH in the synthesis of phytochelatins.info:eu-repo/semantics/publishedVersio
    corecore