14 research outputs found

    Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease

    Get PDF
    BACKGROUND: The cholesteryl ester transfer protein inhibitor evacetrapib substantially raises the high-density lipoprotein (HDL) cholesterol level, reduces the low-density lipoprotein (LDL) cholesterol level, and enhances cellular cholesterol efflux capacity. We sought to determine the effect of evacetrapib on major adverse cardiovascular outcomes in patients with high-risk vascular disease. METHODS: In a multicenter, randomized, double-blind, placebo-controlled phase 3 trial, we enrolled 12,092 patients who had at least one of the following conditions: an acute coronary syndrome within the previous 30 to 365 days, cerebrovascular atherosclerotic disease, peripheral vascular arterial disease, or diabetes mellitus with coronary artery disease. Patients were randomly assigned to receive either evacetrapib at a dose of 130 mg or matching placebo, administered daily, in addition to standard medical therapy. The primary efficacy end point was the first occurrence of any component of the composite of death from cardiovascular causes, myocardial infarction, stroke, coronary revascularization, or hospitalization for unstable angina. RESULTS: At 3 months, a 31.1% decrease in the mean LDL cholesterol level was observed with evacetrapib versus a 6.0% increase with placebo, and a 133.2% increase in the mean HDL cholesterol level was seen with evacetrapib versus a 1.6% increase with placebo. After 1363 of the planned 1670 primary end-point events had occurred, the data and safety monitoring board recommended that the trial be terminated early because of a lack of efficacy. After a median of 26 months of evacetrapib or placebo, a primary end-point event occurred in 12.9% of the patients in the evacetrapib group and in 12.8% of those in the placebo group (hazard ratio, 1.01; 95% confidence interval, 0.91 to 1.11; P=0.91). CONCLUSIONS: Although the cholesteryl ester transfer protein inhibitor evacetrapib had favorable effects on established lipid biomarkers, treatment with evacetrapib did not result in a lower rate of cardiovascular events than placebo among patients with high-risk vascular disease. (Funded by Eli Lilly; ACCELERATE ClinicalTrials.gov number, NCT01687998 .)

    Xenofree generation of limbal stem cells for ocular surface advanced cell therapy

    Get PDF
    Limbal stem cells (LSC) sustain the corneal integrity and homeostasis. LSC deficiency (LSCD) leads to loss of corneal transparency and blindness. A clinical approach to treat unilateral LSCD comprises autologous cultured limbal epithelial stem cell transplantation (CLET). CLET uses xenobiotic culture systems with potential zoonotic transmission risks, and regulatory guidelines make necessary to find xenofree alternatives. We compared two xenofree clinical grade media and two feeder layers. We used CnT07, a defined commercial medium for keratinocytes, and a modified xenofree supplemented hormonal epithelial medium with human serum (XSHEM). Optimal formulation was used to compare two feeder layers: the gold standard 3T3 murine fibroblasts and human processed lipoaspirate cells (PLA). We tested the expressions of ΔNp63α and cytokeratin 3 and 12 by qPCR and immunofluorescence. Morphology, viability, clonogenicity, proliferation, and cell growth assays were carried out. We also evaluated interleukin 6 (IL-6) and stromal-derived factor 1 (SDF-1) by qPCR and ELISA. XSHEM maintained better LSC culture viability and morphology than CnT07. Irradiated PLA feeder cells improved the undifferentiated state of LSC and enhanced their growth and clonogenicity stimulating IL-6 secretion and SDF-1 expression, as well as increased proliferation and cell growth when compared with irradiated 3T3 feeder cells. The combination of XSHEM and PLA feeder cells efficiently sustained LSC xenofree cultures for clinical application. Moreover, PLA feeder layers were able to improve the LSC potential characteristics. Our results would have direct clinical application in CLET for advanced therapy

    Potential Role of Induced Pluripotent Stem Cells (IPSCs) for Cell-Based Therapy of the Ocular Surface

    No full text
    The integrity and normal function of the corneal epithelium are crucial for maintaining the cornea's transparency and vision. The existence of a cell population with progenitor characteristics in the limbus maintains a dynamic of constant epithelial repair and renewal. Currently, cell-based therapies for bio replacement cultured limbal epithelial transplantation (CLET) and cultured oral mucosal epithelial transplantation (COMET) present very encouraging clinical results for treating limbal stem cell deficiency (LSCD) and restoring vision. Another emerging therapeutic approach consists of obtaining and implementing human progenitor cells of different origins in association with tissue engineering methods. The development of cell-based therapies using stem cells, such as human adult mesenchymal or induced pluripotent stem cells (IPSCs), represent a significant breakthrough in the treatment of certain eye diseases, offering a more rational, less invasive, and better physiological treatment option in regenerative medicine for the ocular surface. This review will focus on the main concepts of cell-based therapies for the ocular surface and the future use of IPSCs to treat LSCD

    Introducing the CTA concept

    No full text
    The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. © 2013 Elsevier B.V. All rights reserved

    Über Spirochätenbefunde im Zentralnervensystem mit besonderer Berücksichtigung der syphilogenen Erkrankungen

    No full text

    Introducing the CTA concept

    Get PDF
    The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project
    corecore