188 research outputs found

    Elemental Composition and Sources of Atmospheric Particulate Matter in Dar es Salaam, Tanzania

    Get PDF
    An intensive aerosol field campaign was carried out from 16 August to 16 September 2005 (dry season) at a kerbside in Dar es Salaam, Tanzania. A Gent PM10 stacked filter unit sampler with coarse and fine Nuclepore polycarbonate filters, providing fine (0.4 μm) and coarse (8 μm) size fractions, was deployed. A total of 64 parallel collections were made. All samples were analysed for the PM mass by weighing. A further analysis was performed for 25 elements by particle-induced x-ray emission spectrometry. The PM10 mass, as derived from the stacked filter unit samples, was, on average, 58 μg/m3. The concentrations of the heavy metals were lower than those for the elements of crustal origin. Nevertheless, some typical anthropogenic metals, such as Zn and Pb, exhibited much higher median PM10 levels, suggesting strong local sources for these elements in Dar es Salaam. The results also showed very strong day/night differences for the crustal elements (Al, Si, Ca, Ti and Fe). Most elements exhibit strong correlations in the coarse size fraction and somewhat weaker ones in the fine size fraction suggesting that they may originate predominantly from the same source. Principal component analysis with VARIMAX rotation was applied to the data set. Five and four components were identified for the fine and coarse fractions and explained 86.5% and 90.8% of the variance in the data set respectively.Keywords: PIXE; Atmospheric Aerosols; Elements; Size Fractions; PCA; Kerbsid

    The contributions of snow, fog, and dry deposition to the summer flux of anions and cations at Summit, Greenland

    Get PDF
    Experiments were performed during the period May–July of 1993 at Summit, Greenland. Aerosol mass size distributions as well as daily average concentrations of several anionic and cationic species were measured. Dry deposition velocities for SO42− were estimated using surrogate surfaces (symmetric airfoils) as well as impactor data. Real-time concentrations of particles greater than 0.5 μm and greater than 0.01 μm were measured. Snow and fog samples from nearly all of the events occurring during the field season were collected. Filter sampler results indicate that SO42− is the dominant aerosol anion species, with Na+, NH4+, and Ca2+being the dominant cations. Impactor results indicate that MSA and SO42− have similar mass size distributions. Furthermore, MSA and SO42− have mass in both the accumulation and coarse modes. A limited number of samples for NH4+ indicate that it exists in the accumulation mode. Na, K, Mg, and Ca exist primarily in the coarse mode. Dry deposition velocities estimated from impactor samples and a theory for dry deposition to snow range from 0.017 cm/s +/− 0.011 cm/s for NH4+ to 0.110 cm/s +/− 0.021 cm/s for Ca. SO42− dry deposition velocity estimates using airfoils are in the range 0.023 cm/s to 0.062 cm/s, as much as 60% greater than values calculated using the airborne size distribution data. The rough agreement between the airfoil and impactor-estimated dry deposition velocities suggests that the airfoils may be used to approximate the dry deposition to the snow surface. Laser particle counter (LPC) results show that particles \u3e 0.5 μm in diameter efficiently serve as nuclei to form fog droplets. Condensation nuclei (CN) measurements indicate that particles \u3c 0.5 μm are not as greatly affected by fog. Furthermore, impactor measurements suggest that from 50% to 80% of the aerosol SO42−serves as nuclei for fog droplets. Snow deposition is the dominant mechanism transporting chemicals to the ice sheet. For NO3−, a species that apparently exists primarily in the gas phase as HNO3(g), 93% of the seasonal inventory (mass of a deposited chemical species per unit area during the season) is due to snow deposition, which suggests efficient scavenging of HNO3(g) by snowflakes. The contribution of snow deposition to the seasonal inventories of aerosols ranges from 45% for MSA to 76% for NH4+. The contribution of fog to the seasonal inventories ranges from 13% for Na+ and Ca2+ to 26% and 32% for SO42− and MSA. The dry deposition contribution to the seasonal inventories of the aerosol species is as low as 5% for NH4+ and as high as 23% for MSA. The seasonal inventory estimations do not take into consideration the spatial variability caused by blowing and drifting snow. Overall, results indicate that snow deposition of chemical species is the dominant flux mechanism during the summer at Summit and that all three deposition processes should be considered when estimating atmospheric concentrations based on ice core chemical signals

    Characterization of oligomers from methylglyoxal under dark conditions : a pathway to produce secondary organic aerosol through cloud processing during nighttime

    Get PDF
    Aqueous-phase oligomer formation from methylglyoxal, a major atmospheric photooxidation product, has been investigated in a simulated cloud matrix under dark conditions. The aim of this study was to explore an additional pathway producing secondary organic aerosol (SOA) through cloud processes without participation of photochemistry during nighttime. Indeed, atmospheric models still underestimate SOA formation, as field measurements have revealed more SOA than predicted. Soluble oligomers (n = 1-8) formed in the course of acid-catalyzed aldol condensation and acid-catalyzed hydration followed by acetal formation have been detected and characterized by positive and negative ion electrospray ionization mass spectrometry. Aldol condensation proved to be a favorable mechanism under simulated cloud conditions, while hydration/acetal formation was found to strongly depend on the pH of the system and only occurred at a pH < 3.5. No evidence was found for formation of organosulfates. The aldol oligomer series starts with a beta-hydroxy ketone via aldol condensation, where oligomers are formed by multiple additions of C3H4O2 units (72 Da) to the parent beta-hydroxy ketone. Ion trap mass spectrometry experiments were performed to structurally characterize the major oligomer species. A mechanistic pathway for the growth of oligomers under cloud conditions and in the absence of UV-light and OH radicals, which could substantially enhance in-cloud SOA yields, is proposed here for the first time

    Source apportionment of carbonaceous chemical species to fossil fuel combustion, biomass burning and biogenic emissions by a coupled radiocarbon-levoglucosan marker method

    Get PDF
    An intensive aerosol measurement and sample collection campaign was conducted in central Budapest in a mild winter for 2 weeks. The online instruments included an FDMS-TEOM, RT-OC/EC analyser, DMPS, gas pollutant analysers and meteorological sensors. The aerosol samples were collected on quartz fibre filters by a low-volume sampler using the tandem filter method. Elemental carbon (EC), organic carbon (OC), levoglucosan, mannosan, galactosan, arabitol and mannitol were determined, and radiocarbon analysis was performed on the aerosol samples. Median atmospheric concentrations of EC, OC and PM2.5 mass were 0.97, 4.9 and 25 mu g m(-3), respectively. The EC and organic matter (1.6 x OC) accounted for 4.8 and 37 %, respectively, of the PM2.5 mass. Fossil fuel (FF) combustion represented 36% of the total carbon (TC = EC + OC) in the PM2.5 size fraction. Biomass burning (BB) was a major source (40 %) for the OC in the PM2.5 size fraction, and a substantial source (11 %) for the PM10 mass. We propose and apply here a novel, straightforward, coupled radiocarbon-levoglucosan marker method for source apportionment of the major carbonaceous chemical species. The contributions of EC and OC from FF combustion (ECFF and OCFF to the TC were 11.0 and 25 %, respectively, EC and OC from BB (ECBB and OCBB were responsible for 5.8 and 34 %, respectively, of the TC, while the OC from biogenic sources (OCBIO made up 24% of the TC. The overall relative uncertainty of the OCBIO and OCBB contributions was assessed to be up to 30 %, while the relative uncertainty for the other apportioned species is expected to be below 20 %. Evaluation of the apportioned atmospheric concentrations revealed some of their important properties and relationships among them. ECFF and OCFF were associated with different FF combustion sources. Most ECFF was emitted by vehicular road traffic, while the contribution of non-vehicular sources such as domestic and industrial heating or cooking using gas, oil or coal to OCFF was substantial. The mean contribution of BB to EC particles was smaller by a factor of approximately 2 than that of road traffic. The main formation processes of OCFF, OCBB and OCBIO from volatile organic compounds were jointly influenced by a common factor, which is most likely the atmospheric photochemistry, while primary organic emissions can also be important. Technological improvements and control measures for various BB appliances, together with efficient education and training of their users, in particular on the admissible fuel types, offer an important potential for improving the air quality in Budapest, and likely in other cities as well

    The formation, properties and impact of secondary organic aerosol: current and emerging issues

    Get PDF
    Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed

    Elemental and Organic Carbon in PM10: a One Year Measurement Campaign within the European Monitoring and Evaluation Programme EMEP

    Get PDF
    In the present study, ambient aerosol (PM10) concentrations of elemental carbon (EC), organic carbon (OC), and total carbon (TC) are reported for 12 European rural background sites and two urban background sites following a one-year (1 July 2002¿1 July 2003) sampling campaign within the European Monitoring and Evaluation Programme, EMEP (http://www.emep.int/). The purpose of the campaign was to assess the feasibility of performing EC and OC monitoring on a regular basis and to obtain an overview of the spatial and seasonal variability on a regional scale in Europe. Analyses were performed using the thermal-optical transmission (TOT) instrument from Sunset Lab Inc., operating according to a NIOSH derived temperature program. The annual mean mass concentration of EC ranged from 0.17±0.19µgm-3 (mean ± SD) at Birkenes (Norway) to 1.83±1.32µgm-3 at Ispra (Italy). The corresponding range for OC was 1.20±1.29µgm-3 at Mace Head (Ireland) to 7.79±6.80µgm-3 at Ispra. On average, annual concentrations of EC, OC, and TC were three times higher for rural background sites in Central, Eastern and Southern Europe compared to those situated in the Northern andWestern parts of Europe. Wintertime concentrations of EC and OC were higher than those recorded during summer for the majority of the sites. Moderate to high Pearson correlation coefficients (rp) (0.50¿0.94) were observed for EC versus OC for the sites investigated. The lowest correlation coefficients were noted for the three Scandinavian sites: Aspvreten (SE), Birkenes (NO), and Virolahti (FI), and the Slovakian site Stara Lesna, and are suggested to reflect biogenic sources, wild and prescribed fires. This suggestion is supported by the fact that higher concentrations of OC are observed for summer compared to winter for these sites. For the rural background sites, total carbonaceous material accounted for 30±9% of PM10, of which 27±9% could be attributed to organic matter (OM) and 3.4±1.0% to elemental matter (EM). OM was found to be more abundant than SO2- 4 for sites reporting both parametersJRC.H.2-Climate chang

    Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    Get PDF
    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.Research at the University of Cambridge was supported by a Marie Curie Intra-European fellowship (project no. 254319) and the ERC grant no. 279405. We thank the SAPHIR and TNA2012 team in Jülich for supporting our measurements and the support by EUROCHAMP2 contract no. 228335. The field-work was funded by ERC grant 227463 and the Academy of Finland Centre of Excellence (grants 1118615 and 272041) and by the Office of Science (BER), US Department of Energy via Biogenic Aerosols - Effects on Clouds and Climate (BAECC). European Union’s Horizon 2020 research and innovation programme under grant agreement no. 654109 and previously from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254. We thank the Met Office for use of the NAME model. S.C. thanks the UK Natural Environment Research Council for her studentship

    The Southern African Regional Science Initiative (SAFARI 2000): Overview of the Dry Season Field Campaign

    Get PDF
    The Southern African Regional Science Initiative (SAFARI 2000) is an international science project investigating the earth-atmosphere-human system in southern Africa. The programme was conducted over a two-year period from March 1999 to March 2001. The dry season field campaign (August-September 2000) was the most intensive activity and involved over 200 scientists from eighteen countries. The main objectives were to characterize and quantify biogenic, pyrogenic and anthropogenic aerosol and trace gas emissions and their transport and transformations in the atmosphere, and to validate NASA\u27s Earth Observing System\u27s satellite Terra within a scientific context. Five aircraft - two South African Weather Service Aerocommanders, the University of Washington\u27s CV-580, the U.K. Meteorological Office\u27s C-130, and NASA\u27s ER-2-with different altitude capabilities, participated in the campaign. Additional airborne sampling of southern African air masses, that had moved downwind of the subcontinent, was conducted by the CSIRO over Australia. Multiple observations were made in various geographical sectors under different synoptic conditions. Airborne missions were designed to optimize the value of synchronous over-flights of the Terra satellite platform, above regional ground validation and science targets. Numerous smaller-scale ground validation activities took place throughout the subcontinent during the campaign period
    corecore