981 research outputs found

    How inert, perturbing, or interacting are cryogenic matrices? A combined spectroscopic (infrared, electronic, and x-ray absorption) and DFT investigation of matrix-isolated Iron, Cobalt, Nickel, and Zinc Dibromides

    Get PDF
    The interactions of FeBr2, CoBr2, NiBr2 and ZnBr2 with Ne, Ar, Kr, Xe, CH4 and N2 matrices have been investigated using IR, electronic absorption and X-ray absorption spectroscopies, as well as DFT calculations. ZnBr2 is linear in all the matrices. NiBr2 is linear in all but N2 matrices where it is severely bent. For FeBr2 and CoBr2 there is a more gradual change, with evidence of non-linearity in Xe and CH4 matrices as well as N2. In the N2 matrices the presence of νNN modes blue shifted from the “free” N2 values indicates the presence of physisorbed species, and the magnitude of the blue-shift correlates with the shift in the ν3 mode of the metal dibromide. In the case of NiCl2 and NiBr2 chemisorbed species are formed after photolysis, but only if deposition takes place below 10 K. There was no evidence for chemisorbed species for NiF2 and FeBr2 and in the case of CoBr2 the evidence was not strong

    WNT11-FZD7-DAAM1 signalling supports tumour initiating abilities and melanoma amoeboid invasion

    Get PDF
    Melanoma is a highly aggressive tumour that can metastasize very early in disease progression. Notably, melanoma can disseminate using amoeboid invasive strategies. We show here that high Myosin II activity, high levels of ki-67 and high tumour-initiating abilities are characteristic of invasive amoeboid melanoma cells. Mechanistically, we find that WNT11-FZD7-DAAM1 activates Rho-ROCK1/2-Myosin II and plays a crucial role in regulating tumour-initiating potential, local invasion and distant metastasis formation. Importantly, amoeboid melanoma cells express both proliferative and invasive gene signatures. As such, invasive fronts of human and mouse melanomas are enriched in amoeboid cells that are also ki-67 positive. This pattern is further enhanced in metastatic lesions. We propose eradication of amoeboid melanoma cells after surgical removal as a therapeutic strategy. Amoeboid cells are associated with melanoma invasive capacity. Here, the authors show that the WNT11-FZD7-DAAM1 pathway regulates tumour-initiating potential, invasion and metastasis lead by amoeboid cells in the invasive front of melanoma tumours

    Valence Fluctuations Revealed by Magnetic Field Scan: Comparison with Experiments in YbXCu_4 (X=In, Ag, Cd) and CeYIn_5 (Y=Ir, Rh)

    Full text link
    The mechanism of how critical end points of the first-order valence transitions (FOVT) are controlled by a magnetic field is discussed. We demonstrate that the critical temperature is suppressed to be a quantum critical point (QCP) by a magnetic field. This results explain the field dependence of the isostructural FOVT observed in Ce metal and YbInCu_4. Magnetic field scan can lead to reenter in a critical valence fluctuation region. Even in the intermediate-valence materials, the QCP is induced by applying a magnetic field, at which the magnetic susceptibility also diverges. The driving force of the field-induced QCP is shown to be a cooperative phenomenon of the Zeeman effect and the Kondo effect, which creates a distinct energy scale from the Kondo temperature. The key concept is that the closeness to the QCP of the FOVT is capital in understanding Ce- and Yb-based heavy fermions. It explains the peculiar magnetic and transport responses in CeYIn_5 (Y=Ir, Rh) and metamagnetic transition in YbXCu_4 for X=In as well as the sharp contrast between X=Ag and Cd.Comment: 14 pages, 9 figures, OPEN SELECT in J. Phys. Soc. Jp

    Study of interplanar binding in graphite by extended Thomas-Fermi theory

    Get PDF
    A model of a graphite crystal is used which consists of a set of parallel slabs of positive charge immersed in an electron sea. Each slab, about 1 Å wide, contains the charge of the nucleus and five electrons per carbon atom, homogeneously distributed in the volume of the slabs. The electron density in the region between slabs is calculated from Thomas-Fermi-Dirac theory including corrections for inhomogeneity to the kinetic energy and correlation energy. Also, a calculation is reported with the electron density obtained by a minimization of the Thomas-Fermi-Dirac-Kirzhnits functional. The results are in semiquantitative agreement with empirical data

    Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at sNN=200\sqrt{s_{NN}}=200 GeV

    Full text link
    Dihadron azimuthal correlations containing a high transverse momentum (\pt) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to \pp\ and \dAu\ collisions. The modification increases with the collision centrality, suggesting a path-length dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60\%) Au+Au collisions at \snn=200~GeV as a function of the trigger particle's azimuthal angle relative to the event plane, \phis=|\phit-\psiEP|. The azimuthal correlation is studied as a function of both the trigger and associated particle \pt. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (\zyam), are described. The away-side correlation is strongly modified, and the modification varies with \phis, which is expected to be related to the path-length that the away-side parton traverses. The pseudo-rapidity (\deta) dependence of the near-side correlation, sensitive to long range \deta correlations (the ridge), is also investigated. The ridge and jet-like components of the near-side correlation are studied as a function of \phis. The ridge appears to drop with increasing \phis while the jet-like component remains approximately constant. ...Comment: 50 pages, 39 figures, 6 table

    Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons

    Get PDF
    We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two- and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudo-rapidity or relative azimuthal angle from d+Au to central Au+Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure

    Observation of the antimatter helium-4 nucleus

    Get PDF
    High-energy nuclear collisions create an energy density similar to that of the universe microseconds after the Big Bang, and in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high energy accelerator of heavy nuclei is an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4Heˉ^4\bar{He}), also known as the anti-{\alpha} (αˉ\bar{\alpha}), consists of two antiprotons and two antineutrons (baryon number B=-4). It has not been observed previously, although the {\alpha} particle was identified a century ago by Rutherford and is present in cosmic radiation at the 10% level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by about 1000 with each additional antinucleon. We present the observation of the antimatter helium-4 nucleus, the heaviest observed antinucleus. In total 18 4Heˉ^4\bar{He} counts were detected at the STAR experiment at RHIC in 109^9 recorded Au+Au collisions at center-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, which has implications beyond nuclear physics.Comment: 19 pages, 4 figures. Submitted to Nature. Under media embarg

    Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV

    Get PDF
    We report new STAR measurements of mid-rapidity yields for the Λ\Lambda, Λˉ\bar{\Lambda}, KS0K^{0}_{S}, Ξ\Xi^{-}, Ξˉ+\bar{\Xi}^{+}, Ω\Omega^{-}, Ωˉ+\bar{\Omega}^{+} particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity yields for the Λ\Lambda, Λˉ\bar{\Lambda}, KS0K^{0}_{S} particles in Au+Au at \sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions

    An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement

    Full text link
    The QCD phase diagram lies at the heart of what the RHIC Physics Program is all about. While RHIC has been operating very successfully at or close to its maximum energy for almost a decade, it has become clear that this collider can also be operated at lower energies down to 5 GeV without extensive upgrades. An exploration of the full region of beam energies available at the RHIC facility is imperative. The STAR detector, due to its large uniform acceptance and excellent particle identification capabilities, is uniquely positioned to carry out this program in depth and detail. The first exploratory beam energy scan (BES) run at RHIC took place in 2010 (Run 10), since several STAR upgrades, most importantly a full barrel Time of Flight detector, are now completed which add new capabilities important for the interesting physics at BES energies. In this document we discuss current proposed measurements, with estimations of the accuracy of the measurements given an assumed event count at each beam energy.Comment: 59 pages, 78 figure

    Charged and strange hadron elliptic flow in Cu+Cu collisions at sNN\sqrt{s_{NN}} = 62.4 and 200 GeV

    Get PDF
    We present the results of an elliptic flow analysis of Cu+Cu collisions recorded with the STAR detector at 62.4 and 200GeV. Elliptic flow as a function of transverse momentum is reported for different collision centralities for charged hadrons and strangeness containing hadrons KS0K_{S}^{0}, Λ\Lambda, Ξ\Xi, ϕ\phi in the midrapidity region eta<1.0|eta|<1.0. Significant reduction in systematic uncertainty of the measurement due to non-flow effects has been achieved by correlating particles at midrapidity, η<1.0|\eta|<1.0, with those at forward rapidity, 2.5<η<4.02.5<|\eta|<4.0. We also present azimuthal correlations in p+p collisions at 200 GeV to help estimating non-flow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au+Au collisions at 200 GeV. We observe that v2v_{2}(pTp_{T}) of strange hadrons has similar scaling properties as were first observed in Au+Au collisions, i.e.: (i) at low transverse momenta, pT<2GeV/cp_T<2GeV/c, v2v_{2} scales with transverse kinetic energy, mTmm_{T}-m, and (ii) at intermediate pTp_T, 2<pT<4GeV/c2<p_T<4GeV/c, it scales with the number of constituent quarks, nqn_q. We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v2v_{2}(pTp_{T}) for KS0K_{S}^{0} and Λ\Lambda. Eccentricity scaled v2v_2 values, v2/ϵv_{2}/\epsilon, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au+Au collisions which go further in density shows v2/ϵv_{2}/\epsilon depend on the system size, number of participants NpartN_{part}. This indicates that the ideal hydrodynamic limit is not reached in Cu+Cu collisions, presumably because the assumption of thermalization is not attained.Comment: 18 pages, 14 figure
    corecore