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A model of a graphite crystal is used which consists of a set of parallel slabs of positive charge
immersed in an electron sea. Each slab, about 1 A wide, contains the charge of the nucleus and five
electrons per carbon atom, homogeneously distributed in the volume of the slabs. The electron den-
sity in the region between slabs is calculated from Thomas-Fermi-Dirac theory including corrections
for inhomogeneity to the kinetic energy and correlation energy. Also, a calculation is reported with
the electron density obtained by a minimization of the Thomas-Fermi-Dirac-Kirzhnits functional.
The results are in semiquantitative agreement with empirical data.

I. INTRODUCTION

Density-functional theory has allowed a detailed inter-
pretation of the electronic structure of many solids. In
general, the study involves the solution of a set of self-
consistent one-body Schrodinger equations and gives a
quantitative agreement with empirical data. (A thorough
review is given in the recent book by Lundqvist and
March.!) In view of the success of these methods, it can
be questioned whether the simpler, but less accurate,
Thomas-Fermi (TF) theory and its extensions’ are still
useful. However, there are two reasons for using TF
theory. In the first place, there are systems so complex
that a more refined calculation may be too involved. In
the second place, theories resting upon a single equation,
such as the TF theory and its extensions, may give the
general trend for the variation of properties which, to
some extent, is lost in more detailed calculations. The
paradigmatic example is the TF model of the atom.

One of the most difficult tasks of TF and related
theories is the quantitative interpretation of the chemical
bond. In fact, although extended TF theory is able to
predict the different energy contributions (kinetic, direct
electrostatic, exchange, etc.) of a many-electron system
with small errors (of a few percent), it is well known that
binding comes from a delicate balance between these
terms, and errors may accumulate rather than cancel. Ac-
tually, examples of a quantitative success of TF theory in
the prediction of bond properties are scarce, although
many qualitative agreements have been reported.? The
first problem that appears in the TF theory of the chemi-
cal bond is that pure TF equation does not predict binding
between atoms, as was rigorously proved by Teller.’

Furthermore, the inclusion of the local density (Dirac).

correction for exchange is not enough, and gradient terms
must be included. However, gradient corrections should
be used carefully as they represent the first terms in a
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series expansion not convergent in general.* On the other
hand, no practical alternative has been found other than
an exact treatment of the kinetic energy term, which leads
again to one-body equations, thus departing from TF
theory.

The calculation of the interlayer force in graphite is one
of the few examples in which extended TF theory gives an
accurate interpretation of the bond properties. Graphite
has the unique property of having two entirely different
types of interaction binding the structure. In the basal
plane, the C atoms are held in a two-dimensional hexago-
nal lattice by strong covalent bonds. These bonds are
highly directional and account for a binding energy of or-
der 5 eV/C-atom. On the other hand, the planes are held
to each other by much weaker energies, of order 0.05
eV/C-atom, which are neither covalent nor directional.
Fully ab initio band-structure calculations have been per-
formed for graphite®® which have obtained excellent re-
sults for the electronic charge density,” but these studies
did not examine the total energy of the graphite system.
On the other hand, several calculations with extended TF
theory have been reported®—!° and the present calculation
represents a new contribution on this line.

Graphite has several advantages with respect to other
systems. In the first place, there are many reliable experi-
mental data on the structural properties of graphite avail-
able for direct comparison with theory, like x-ray diffrac-
tion,” low-energy electron diffraction,!! neutron scatter-
ing,!? and hydrostatic pressure.!>!* In the second place,
graphite and its intercalated compounds are materials
with important practical applications. Finally, the bind-
ing between layers can be quantitatively studied with an
extremely simple “jellium” model,® which gives rise to
equations that can be solved very easily, even analytically
in some cases. This model, which is described in detail in
the next section, represents a kind of theoretical laborato-
ry for the test of different improvements to TF theory.
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The purpose of the present calculation is to try to give
an answer to a number of questions that arise in the com-
parison of two previous Thomas-Fermi (or density-
functional) calculations of interplanar binding in graphite
(papers by Santos and Villagra® and by DiVincenzo, Mele,
and Holzwarth!®). Both papers used a density functional
of the form ,

Ulpl=Urelpl+ Uklpl+ Uilp] - (1)

Here, the first term is the usual Thomas-Fermi energy

Urelpl= [ dr[(3a#/10m)(3/7)* %053 +(8m)~ 'E?] ,
%)

p(r) being the number of electrons per unit volume and
E(r) the total electric field at r. The term Uy is the first
gradient correction to the kinetic energy, which, as calcu-
lated by Kirzhnits,!’ is

Uklpl=#/72m) [ dr[(Vp)*/p—6V7p] . (3)

The last term of (3) gives no contribution for atoms, mole-
cules, and solids with pointlike nuclei, so that it is possible
to use, instead of (3),

Uglpl=(#/72m) [ dx(Vp)/p, (3"

which is the form taken by DiVincenzo et al. 10 However,

in the jellium model of Santos and Villagra,® where the
pointlike nuclei were replaced by layers of positive charge,
the form (3) was used. The term U,.[p] contains ex-
change and correlation energy. Santos and Villagra®
neglected correlation and used for exchange the Dirac ex-
pression

UD[p]z(_'362/4)(3/,”.)1/3p4/3 , 4)

while DiVincenzo et al. considered both exchange and
correlation by means of the expression proposed by Hedin
and Lundqvist,'® whose leading term is just (4).

Besides the form of the density functional, the methods
used in the commented papers differ in the model of
graphite and the procedure used to get the density.
DiVincenzo et al. used a simple superposition of densi-
ties, each one calculated for an isolated layer of carbon
atoms in hexagonal array, and no minimization of the
functional was made. In contrast, Santos and Villagra
considered a much simpler jellium model of graphite, but
calculated the density by minimizing the energy
Utglpl+ Uplp] for all electrons (6 per atom), which is
equivalent to solve the Thomas-Fermi-Dirac equation.

The results of both calculations are similar, but the
agreement with experimental data is better in the paper by

Santos and Villagra. For instance, 4% error® in the inter- -

layer distance compared with 15%,!° both by defect; or
30% error® for the compressibility against 180%,!° both
by excess. The main conclusion of this comparison seems
to be that minimization of the functional is rather impor-
tant for the calculation of the density. The conclusion,
however, is preliminary due to the difference in the
models used in both papers and the fact that Santos and
Villagra neglected correlation energy. In the present pa-
per we study the influence of both facts by performing
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new calculations similar to those of Santos and Villagra
but with a more elaborate graphite model (presented in
Sec. II) and including correlation energy (Sec. III). In or-
der to test the importance of a correct minimization of the
functional, we have also made a calculation starting from
the Thomas-Fermi-Dirac-Kirzhnits equation, which cor-
responds to minimizing Uytg+ Up+ Uk (Sec. IV). It is
worth noting that the initial purpose of the present calcu-
lation was trying to improve the early results of Santos
and Villagra rather than making a comparison with the
work by DiVincenzo et al. and, actually, when that work
was published, the present calculations were practically
concluded. This explains why we have not used the same
functional as DiVincenzo et al. for the correlation energy.

II. MODEL OF GRAPHITE

On a graphite crystal it is possible to consider three
kinds of electrons placed at different regions of space:

(1) There are electrons 1s of the carbon atoms, which
are situated inside spheres centered at each nucleus, with a
radius of order a¢/Z ~0.1 A, ag being the Bohr radius
and Z the atomic number (i.e., Z =6). These spheres are
very small in comparison with distances between nuclei
(1.42 A). ;

(2) There are electrons of the o bonds between carbon
atoms in the same layer. These electrons lie in a zone,
with thickness about 1 A, the center of which is the layer
containing the nuclei.

(3) The remaining, 2p,, electrons (one per atom) occupy
chiefly the region halfway between layers, a zone more
than 1.5 A wide. These are the electrons which contribute
to the binding between layers and they are the only ones
that we must explicitly consider in our calculation.

It is to be expected that the electron density changes
quickly in the neighborhood of nuclei, but more slowly far
from them. Also, we may assume that the density in the
third zone considered above will change mainly in the
direction normal to the layers, but it will scarcely change
in the directions parallel to the layers. This is due to the
fact that the distance between layers (3.5 A) is much
larger than the distance between nearby nuclei in a layer
(1.4 A). In this way, we arrive at a picture of a graphite
crystal as a kind of metal having “ions” in the form of
slabs of positive charge (with a homogeneous distribution

- equivalent to one elementary charge per atom) immersed

in a sea of 2p, electrons which glue the “ions.” This pic-
ture helps us understand the metallic properties of
graphite more easily than the usual picture, which sees the
graphite crystal as a set of planar macromolecules bound
by van der Waals forces.

We will study forces between layers of graphite by con-
sidering the variation of the energy per electron of a sys-
tem of parallel “ionic slabs” when the distance R between
slabs changes. Our problem is just to evaluate the energy
per electron, E(R), of an electron system placed at a re-
gion bounded by two parallel planes at a distance R. The
number of electrons per unit area in a plane agrees with
the number of atoms per unit area of a graphite layer be-
cause we consider one electron per atom contributing to
binding. Then, the surface density of electrons is
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0=0.1067 a.u. [from now on, we will use hartree units
(a.u.) such that Zi=m =e =1]. Hence, the laws of electro-
statics plus symmetry arguments fix the electric field in
each boundary plane to be 270 =0.6706 a.u. After that,
we shall evaluate the electric potential at each point in the
region by means of the Thomas-Fermi-Dirac equation,
which also allows for the calculation of the energy of the
electron system. Before doing that, we must evaluate the
width of each “ionic slab” in order to specify completely
the model of graphite.

The calculation of the width of an “ionic slab” rests
upon the assumption that the electron density near a nu-
cleus does not change very much in going from the free
atom to graphite except that we consider atoms with
structure 1s522s2p3 (4 valence electrons) instead of the
ground-state structure 1s?2s2p2.  Then, the density
around the nucleus is

p(r)=2l¢ls,2+|¢2s,2+3|¢2plz’ (5)

where 9 are the atomic wave functions averaged to spheri-
cal symmetry. We take the atomic functions to be

— Ay —Aqr —A,r
Y y=ae ', thyy=—be Hcre *,
—A,r
¢2P =dre ,

where the effective charges A; and the coefficients (all in
a.u.) are!’

A=5.775, A,=1.505, a=27.76,

(6)

(7)
b=5.378 , ¢=3.268, d=3.209 .

These functions are normalized for the volume element
r2dr (i.e., without the factor 4). Now, we consider two
parallel planes, each one at a distance z, from the nucleus,
in such a way that a net charge of 5 electrons of the atom
remains between the planes and 1 electron outside. That
is, we have

flzl <zop(r)d3"=5 ) ; ®)

where p(r) is given as above.

After a straightforward calculation we obtain
2o=1.1826 a.u. Therefore, the width of the “ionic slab”
is 2z, or about 1 A as was estimated at the beginning of

this section. As the distance between “ionic slabs” was la-
|

2/3

2
3T p5/3+(87T)_1

377 |3
10 |

R/2
Urpp(R)=20"" fo dx

where o is the surface density of atoms in a layer and p(x)
the electron density; which is related to the potential
through Poisson’s equation '

d2
-‘;f;—=4ﬂ'p . (12)

Note that our method of calculating the density—in par-
ticular, the second boundary condition (10)—implies that
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da¢
dx

beled R, the distance between graphite layers in our model
will be R +2z,. In the following sections we will evaluate
the energy per atom as a function of the interlayer dis-
tance.

III. CALCULATION FROM THE
THOMAS-FERMI-DIRAC
EQUATION

We assume that the total energy of a graphite crystal is
the sum of additive contributions associated, respectively,
with the “ionic slabs” and the regions between slabs. The
former are assumed to be a constant, which can be set
equal to zero by adjusting the scale of energies. The ener-
gy associated to one of the regions between slabs is
evaluated by the Thomas-Fermi method. The calculation
parallels closely one presented in a paper by Santos and
Villagra® where a more crude model of graphite was used
which, however, led to a very similar calculational prob-
lem. Therefore, we will not repeat the details here, and we
give only a sketch of the procedure used and the results
obtained.

We start with the Thomas-Fermi-Dirac (TFD) equation

d’¢ _ 4 24117273
——=——[14+(1427%) ) 9)
dx? 37t : o]

where ¢ is the electric potential and x a coordinate per-
pendicular to the layers. The problem is one dimensional
due to the assumed translational invariance. That equa-
tion is solved with the boundary conditions

aé aé

=0
dx > | dx

x=R/2

=0.6706 a.u. , (10)

x =0

where x =R /2 is a point halfway between layers (there

~ the electric field d¢ /dx is zero by symmetry); x =0 is the

boundary of an “ionic slab,” in which an electric field ex-
ists as explained in Sec. II. Equation (9) with boundary
conditions (10) does not have a solution when R > 8.1
a.u., a fact related to the finite radius of the atom in the
TFD theory. This prevents us from calculating accurately
the exfoliation energy of graphite because we would need
the energy for R— «. We will estimate that quantity by
an extrapolation procedure explained below.

Once the function ¢(x) is obtained we calculate the en-
ergy per atom through the TFD functional

1/3

4/3
P

2
(11)

’

3 |w

3
4

the valence electron density is not permitted to leak into
the slab region.

The calculated energy is a function of the distance be-
tween graphite layers. That function does not have a
minimum, which means that the TFD theory does not
predict a binding between layers. A similar result was
also obtained in previous calculations.® However, a bind-
ing is predicted if we add the correction for inhomogenei-
ty to the kinetic energy of the electrons in the form of
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Kirzhnits.!> This correction has the following expression
in our case:

2
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way is 0.00198 a.u. to be compared with the empirical'®
value 0.0016 a.u. The agreement is fairly good for an al-

most ab initio calculation of such a complex structure as a
graphite crystal. [The only empirical parameters used

R2 |4 d have been the o bond length in graphite and the atomic
= , 1{4p — ap
Ux(R)=(0/36) f o P dx dx —(0/6) [ dx ) —o wave functions of the carbon atoms (6).] We shall see
= later that the agreement is not as good as it seems.
(13) A more correct procedure to calculate the relevant

When this energy.is added to Eq. (12) a function is ob-
tained which has a minimum at a distance R,. The prac-
tical method to do the calculations closely parallels the
one used in Ref. 8. In particular, the integrals (11) and
(13) were evaluated numerically for several values of R,
which allowed the calculation of the interlayer equilibri-
um distance dg, and the force constant k by adjusting a
suitable second-order polynomial near the minimum. The
calculated values are

doERO+220=6.36 a.u. ,
(14)
k=[d*(Urgp + Ug)/dx*]; _g,=0.0023 a.u. ,

to be compared with the empirical values 6.34 a.u. (Ref.
13) and 0.0019 a.u. (Ref. 12). As stated before, the calcu-
lation of the exfoliation energy of graphite in TFD theory
is ambiguous. We might estimate it from the difference
between the TFD energy at the minimum and at the larg-
est separation between layers which gives a continuous
solution to Eq. (9). The exfoliation energy estimated this

quantities is to do a fitting of the calculated TFD energies
at different values of R by means of a suitable function
and, then, to obtain the quantities from that function. We
have chosen the function

U(d)=—Ad*+Be=*1C, d=R+2z, (15)

and the values obtained are reported in the first row of
Table I. The agreement with empirical values is not as
good as before. .

Correlation energy can be included in the TF theory by
adding a suitable term to the energy. We have used the
Wigner19 expression which, in our case, is

R/2
Uc(R)=—20"" [ " ap*’*(1+bp'/*)~ldx (16)
with
a=0.44(477/3)'"3 | b=7.8(4w/3)!/3 ..

Putting the density calculated from Egs. (9) and (12) in
Eq. (16) a numerical integration gives a term which must
be added to Urgp(R). As it should be, we obtain a func-
tion with a deeper minimum than without correlation en-
ergy. A procedure similar to the first one explained above

TABLE 1. Calculated values compared with results of Refs. 8 and 10 and empirical values. Parameters a, 4, B, C correspond to
the best fitting of the function U(d)=—Ad ~*+ B exp(—ad)+C to the calculated values between d~4 and 9 a.u. The equilibrium
interlayer distance dy, force constant k =(d*U/dR?), and exfoliation energy per atom are calculated from that function. All quanti-
ties are given in hartree units (i=e =m =1). Uqgp is the energy calculated from Thomas-Fermi-Dirac theory, Uk ( Ux) is the com-
plete (incomplete) inhomogeneity correction to the kinetic energy in the form of Kirzhnits, and U the correlation energy. Urppk is
the energy calculated from the Thomas-Fermi-Dirac-Kirzhnits theory. The first 7 rows refer to the model of graphite described in
Sec. II, rows 8 to 12 refer to the intermediate model described in Sec. III, row 10 reports results of Ref. 8, row 11 reports the results of
the calculation by DiVincenzo et al. (Ref. 10), and the last row reports the empirical values, taken from Refs. 13, 12, and 18, respec-
tively, for d,, k, and U,. ‘

a A B C do k Uo
1 electron per atom
Urpp + Uk 1.41 10.13 21.41 0.0015 6.28 0.0025 0.0035
Urpp + Ux 1.41 8.555 18.07 0.0014 6.52 0.0021 0.0029
Urpp+ Uk + Uc 1.40 13.51 26.97 0.0019 6.10 0.0032 0.0046
Urpp+ Uk +Uc 1.40 11.36 22.69 0.0018 6.34 0.0027 0.0039
Urepk 6.12 0.0030 0.0036
Urrpk + Uc ‘ 5.92 0.0036 0.0045
Urrpk Wwith py variable 6.91 0.0033 0.0075
4 electrons per. atom
Urpp+ Uk 1.33 12.64 17.05 0.0019 5.95 0.0027 0.0041
Urgp + U +Uc 1.32 16.64 21.21 0.0023 5.77 0.0034 0.0053
6 electrons per atom (Ref. 8)
Urrp + Uk 1.338 11.868 16.719 0.0016 6.07 0.0026 0.0039
DiVincenzo et al. (Ref. 10) 5.30 0.0052 0.0080

Empirical values 6.34 0.0019 0.0016




8230 EUGENIO GAITE, MATILDE LEAL, AND EMILIO SANTOS 31

gives the following values for the interlayer distance, force
constant, and exfoliation energy, Uy:

dy=6.18 a.u. , k=0.0032 a.u. ,
(17)
Uy=0.0026 a.u.

Again, a more correct procedure is the fitting of the func-
tion (15) to the energies calculated for the different values
of R. The parameters obtained this way are given in row
3 of Table I. As we see, the correlation energy shortens
the interlayer equilibrium distance by about 3% and con-
tributes to binding by about 25%. However, the agree-
ment with empirical values is worse than before, which
seems to indicate that the excellent agreement of Eqgs. (14)
is somewhat accidental. ‘

With respect to the inhomogeneity correction a problem
appears with the second term of Eqs. (3) and (13). This
term does not contribute in the TF theory of atoms and,
more generally, when the external charges (nuclei) are
considered pointlike. In our model of graphite this is not
the case and, in our opinion, this term should be included.
Indeed, it is quite important. In order to estimate the
contribution of the term we have made also the calcula-
tions without it. The results are reported in rows 2 and 4
of Table I, where the inhomogeneity correction (3’) to the
kinetic energy is labeled Uk

The adequacy of our model of graphite can be studied
through a comparison with the “jellium” model of Ref. 8.
Here we consider a graphite crystal as a set of parallel
“ionic slabs” of width 1.18 a.u. immersed in an electron
sea with 1 electron per carbon atom. The “jellium” model
of Ref. 8 can be seen as similar, but with “ionic slabs’
having zero width and the electron sea having 6 electrons
per carbon atom. The results with both calculations are
not too different (see Table I), which gives some justifica-
tion for the model proposed. It is also possible to consider
an intermediate model in which the electron sea has 4
electrons per atom. That is, we put the nuclei and the 1s
electrons in the “ionic slabs” but we treat all valence elec-
trons (4 per atom) by the Thomas-Fermi method. The
width of the ionic slab can also be calculated easily by
putting 2 instead of 5 electrons per atom in each “ionic
slab” [see Eq. (8)]. The result is zy=0.175 a.u. The re-
sults of the calculations with this intermediate model have
also been made, and are reported in Table I.

For comparison, the results of the calculation by
DiVincenzo et al.'° are also included in Table I. It can be
seen that, after including correlation, our results are a lit-
tle closer to theirs.

IV. CALCULATION FROM
THOMAS-FERMI-DIRAC-KIRZHNITS
EQUATION

In view of the influence of a correct minimization of
the functional, we have also made calculations with a den-
sity obtained by a minimization of the functional that in-
cludes the Kirzhnits term (4) besides those previously in-
cluded, (2) and (3). The Euler-Lagrange equation of that
variational problem gives

3 2/3 1/3
U R 234 |3 1/3
2 17'] P ¢ T
2
v @ 1 |
36p dx? " 72p? |dx | 7

which leads to a fourth-order equation when combined
with Poisson’s Eq. (8). As a consequence, we need two
boundary conditions, instead of only one, at each boun-
dary. We choose, besides the electric field E given by Eq.
(6), the density p at the surface of each “ionic slab” and
the gradient of the density halfway between slabs, this
coming from symmetry considerations, i.e.,

dp

=0.084
po=0 % dx

=0. (19)
x=R/2

The density p, is calculated by averaging the atomic den-
sity (5) on the plane z =z,. In comparison with the calcu-
lation of the previous section, we see that an additional
constraint is imposed by demanding continuity of the den-
sity at the surface of the “ionic slabs.”

Equations (18) and (12) give rise to a fourth-order dif-
ferential equation, that can be reduced to a third-order
one by using the electric field modulus E as variable, in-
stead of the coordinate x. This equation can be integrated
once and leads to
2/3

S/3_

1/3

4/3
p

3

ko

4
5

3
T

167° d?

——T*d—E%———‘;'Ez-i—a, (20)
a being an integration constant. This constant cannot be
determined directly from (10) and (19) because we do not
know d’p/dE? at the boundaries. Then, we used a con-
sistency condition by testing several values of a for each
fixed pg,,, until a numerical integration of (20) gives the
correct py [Eq. (19)] for E, [Eq. (10)]. This procedure
gives numerically the density as a function of the electric
field. On the other hand, the distance from the middle
plane between slabs is easily obtained from

E
x=2m~" [ p(E)'dE", @1

which, at the end, gives numerically p as a function of x.
After that, the numerical evaluation of the energy from
the functional is straightforward.

A difficulty appears with the choice between (3) and (3')
for the gradient correction. If the energy is calculated
from the functional (1) over the whole volume, including
the “ionic slabs,” then the second term of (3) gives no con-
tribution, so that (3) and (3') are equivalent (except for a
global constant in the energy). However, if the functional
is applied only to the region outside the slabs, then the
second term of (3) gives an important contribution to the
energy. It seems that the first procedure is more correct
and, indeed, we checked that it gives results closer to the
empirical data. Without including correlation, we ob-
tained the data reported on row 5 of Table I. With corre-
lation energy included we got those of row 6.
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It can be seen that the more complex minimization pro-
cedure described in this section does not improve the
agreement with empirical data. This seems to be a conse-
quence of the smaller freedom allowed by the additional
constraint (19). Then, we tested a minimization of the
functional without the first condition (19), i.e., choosing
for each interlayer distance the value of p, that minimizes
the functional. The results appear in row 7 of Table I.

The conclusion of all these calculations is that a minim-
ization of the Thomas-Fermi-Dirac-Kirzhnits functional,
giving rise to a fourth-order differential equation, is not
reliable. An alternative procedure to get the density from
a second-order equation that includes, nevertheless, gra-
dient corrections is the equation derived recently by
Schwinger®® and generalized by Santos and Leal?!
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(Another generalization has been given very recently by
Englert and Schwinger.??) We hope that these equations
will allow more reliable calculations of binding properties
within extended TF theory and work in this direction is in
progress. In any case, the results of the present calcula-
tion encourage the use of TF theory for more complex
problems, like the study of intercalated graphite com-
pounds, which has already been initiated.??
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