research

Charged and strange hadron elliptic flow in Cu+Cu collisions at sNN\sqrt{s_{NN}} = 62.4 and 200 GeV

Abstract

We present the results of an elliptic flow analysis of Cu+Cu collisions recorded with the STAR detector at 62.4 and 200GeV. Elliptic flow as a function of transverse momentum is reported for different collision centralities for charged hadrons and strangeness containing hadrons KS0K_{S}^{0}, Λ\Lambda, Ξ\Xi, ϕ\phi in the midrapidity region eta<1.0|eta|<1.0. Significant reduction in systematic uncertainty of the measurement due to non-flow effects has been achieved by correlating particles at midrapidity, η<1.0|\eta|<1.0, with those at forward rapidity, 2.5<η<4.02.5<|\eta|<4.0. We also present azimuthal correlations in p+p collisions at 200 GeV to help estimating non-flow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au+Au collisions at 200 GeV. We observe that v2v_{2}(pTp_{T}) of strange hadrons has similar scaling properties as were first observed in Au+Au collisions, i.e.: (i) at low transverse momenta, pT<2GeV/cp_T<2GeV/c, v2v_{2} scales with transverse kinetic energy, mTmm_{T}-m, and (ii) at intermediate pTp_T, 2<pT<4GeV/c2<p_T<4GeV/c, it scales with the number of constituent quarks, nqn_q. We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v2v_{2}(pTp_{T}) for KS0K_{S}^{0} and Λ\Lambda. Eccentricity scaled v2v_2 values, v2/ϵv_{2}/\epsilon, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au+Au collisions which go further in density shows v2/ϵv_{2}/\epsilon depend on the system size, number of participants NpartN_{part}. This indicates that the ideal hydrodynamic limit is not reached in Cu+Cu collisions, presumably because the assumption of thermalization is not attained.Comment: 18 pages, 14 figure

    Similar works