170 research outputs found

    Venus Atmosphere Profile from a Maximum Entropy Principle

    Get PDF
    The variational method with constraints recently developed by Verkley and Gerkema to describe maximum-entropy atmospheric profiles is generalized to ideal gases but with temperature-dependent specific heats. In so doing, an extended and non standard potential temperature is introduced that is well suited for tackling the problem under consideration. This new formalism is successfully applied to the atmosphere of Venus. Three well defined regions emerge in this atmosphere up to a height of 100km100 km from the surface: the lowest one up to about 35km35 km is adiabatic, a transition layer located at the height of the cloud deck and finally a third region which is practically isothermal.Comment: 6 pages, 3 figure

    Analytic structure of the S-matrix for singular quantum mechanics

    Get PDF
    The analytic structure of the S-matrix of singular quantum mechanics is examined within a multichannel framework, with primary focus on its dependence with respect to a parameter (Ω) that determines the boundary conditions. Specifically, a characterization is given in terms of salient mathematical and physical properties governing its behavior. These properties involve unitarity and associated current-conserving Wronskian relations, time-reversal invariance, and Blaschke factorization. The approach leads to an interpretation of effective nonunitary solutions in singular quantum mechanics and their determination from the unitary family.Fil: Camblong, Horacio E.. University of San Francisco; Estados UnidosFil: Epele, Luis Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física. Laboratorio de Física Teórica; ArgentinaFil: Fanchiotti, Huner. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física. Laboratorio de Física Teórica; ArgentinaFil: García Canal, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física. Laboratorio de Física Teórica; Argentin

    Lepton number violation and neutrino masses in 3-3-1 models

    Get PDF
    ABSTRACT: Lepton number violation and its relation to neutrino masses are investigated in several versions of the (3) ⊗ (3) ⊗ (1) model. Spontaneous and explicit violation and conservation of the lepton number are considered. In one of the models (the socalled economical one), the lepton number is spontaneously violated and it is found that the would be Majoron is not present because it is gauged away, providing in this way the longitudinal polarization component to a now massive gauge field

    Effective Field Theory Program for Conformal Quantum Anomalies

    Full text link
    The emergence of conformal states is established for any problem involving a domain of scales where the long-range, SO(2,1) conformally invariant interaction is applicable. Whenever a clear-cut separation of ultraviolet and infrared cutoffs is in place, this renormalization mechanism produces binding in the strong-coupling regime. A realization of this phenomenon, in the form of dipole-bound anions, is discussed.Comment: 15 pages. Expanded, with additional calculational details. To be published in Phys. Rev.

    Dimensional Transmutation and Dimensional Regularization in Quantum Mechanics. II: Rotational Invariance

    Get PDF
    A thorough analysis is presented of the class of central fields of force that exhibit: (i) dimensional transmutation and (ii) rotational invariance. Using dimensional regularization, the two-dimensional delta-function potential and the DD-dimensional inverse square potential are studied. In particular, the following features are analyzed: the existence of a critical coupling, the boundary condition at the origin, the relationship between the bound-state and scattering sectors, and the similarities displayed by both potentials. It is found that, for rotationally symmetric scale-invariant potentials, there is a strong-coupling regime, for which quantum-mechanical breaking of symmetry takes place, with the appearance of a unique bound state as well as of a logarithmic energy dependence of the scattering with respect to the energy.Comment: 29 pages. To appear in Annals of Physic

    On the Inequivalence of Renormalization and Self-Adjoint Extensions for Quantum Singular Interactions

    Full text link
    A unified S-matrix framework of quantum singular interactions is presented for the comparison of self-adjoint extensions and physical renormalization. For the long-range conformal interaction the two methods are not equivalent, with renormalization acting as selector of a preferred extension and regulator of the unbounded Hamiltonian.Comment: 19 pages, including 2 figures. The title and abstract were changed to more accurately reflect the content. The text was rearranged into sections, with several equations and multiple paragraphs added for clarity; and a few typos were corrected. The central equations and concepts remain unchanged

    Renormalization of the Inverse Square Potential

    Get PDF
    The quantum-mechanical D-dimensional inverse square potential is analyzed using field-theoretic renormalization techniques. A solution is presented for both the bound-state and scattering sectors of the theory using cutoff and dimensional regularization. In the renormalized version of the theory, there is a strong-coupling regime where quantum-mechanical breaking of scale symmetry takes place through dimensional transmutation, with the creation of a single bound state and of an energy-dependent s-wave scattering matrix element.Comment: 5 page
    corecore