48 research outputs found

    Benchmark of FEM, Waveguide and FDTD Algorithms for Rigorous Mask Simulation

    Full text link
    An extremely fast time-harmonic finite element solver developed for the transmission analysis of photonic crystals was applied to mask simulation problems. The applicability was proven by examining a set of typical problems and by a benchmarking against two established methods (FDTD and a differential method) and an analytical example. The new finite element approach was up to 100 times faster than the competing approaches for moderate target accuracies, and it was the only method which allowed to reach high target accuracies.Comment: 12 pages, 8 figures (see original publication for images with a better resolution

    Rigorous Simulation of 3D Masks

    Get PDF
    We perform 3D lithography simulations by using a finite-element solver. To proof applicability to real 3D problems we investigate DUV light propagation through a structure of size 9 microns times 4 microns times 65 nm. On this relatively large computational domain we perform rigorous computations (No Hopkins) taking into account a grid of 11 times 21 source points with two polarization directions each. We obtain well converged results with an accuracy of the diffraction orders of about one percent. The results compare well to experimental aerial imaging results. We further investigate the convergence of 3D solutions towards quasi-exact results obtained with different methods.Comment: 8 pages, 5 figures (see original publication for images with a better resolution

    Total OH reactivity measurements using a new fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    Get PDF
    The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date, direct measurements of total OH reactivity have been either performed using a Laser-Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photoionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. <br><br> Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60–70 s), sensitivity (LOD 3–6 s<sup>−1</sup>) and overall uncertainty (25% in optimum conditions) for total OH reactivity were similar to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical alternative for groups interested in total OH reactivity observations

    Introducing the novel concept of cumulative concentration roses for studying the transport of ultrafine particles from an airport to adjacent residential areas

    Get PDF
    Airports are often surrounded by urban residential areas, which is both a motivation and challenge for studying their potential impact on local air quality. Airports are a relevant source of ultrafine particles (UFPs), which can pose a risk to human health due to their small size (particle diameter Dp≤100 nm). However, in urban environments, UFPs originate from a multitude of biogenic and anthropogenic sources. Here, we investigate UFPs in close proximity to an airport to disentangle their impact on local air quality from other urban sources. We present observations and analyses of airborne UFP concentrations and size distributions determined at two sites in close proximity to Munich Airport. Therefore, two novel measurement stations were established north and south of the airport but were neither situated on the axis of prevailing wind directions nor impacted by fly overs. This set-up allowed us to explore a mainly advection-driven distribution of UFPs into the most populated adjacent residential areas. The observation period covered a full year from August 2021 to July 2022. We analysed the data set in three steps. (1) First, we derived UFP concentration roses using the wind data as reported at 10 m height at the airport to represent the local wind field. An increase in particle number concentrations and a shift of the modal maximum towards smaller mobility diameters became evident for wind directions, including those approaching from the airport. During the airport's operation hours during the daytime, median particle number concentrations were 2.2- and 1.6-fold compared to nighttime at the northern station and the southern station. However, our data had a high variability, and the direction-based analysis was uncertain due to other potential UFP sources in the surroundings and the assumption of a homogeneous, local wind field. (2) Next, we derived concentration roses employing the airflow observations from the two measuring stations at 5.3 m height. While the annual concentration rose in principle yielded the same conclusions as the first analysis step, a significant seasonal and diurnal variability of UFPs and wind became evident. The influencing factors were likely other urban local UFP sources, an increased surface roughness due to green vegetation, and the atmospheric boundary layer development. (3) In order to assess the possible advection of UFPs from the direction of Munich Airport relative to all other directions over the course of the year, we calculated cumulative concentration roses with both local- and site-scale wind data. Under the assumption of a homogeneous local wind field, the fraction of all UFPs sampled in airflows approaching from the airport's direction was 21 % (N322) and 40 % (S229). Considering a local background, the range of UFP advection from Munich Airport to the adjacent residential areas was up to 10 % in the north and 14 % in the south. It has to be noted that these values highlight the relative magnitude of the maximum impact of the airport on local air quality as they do not distinguish between UFP sources from the airport and other measuring sites. Additionally, they integrate over a time period during which the airport did not reach its full capacity compared to pre-COVID-19 times.</p

    Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity

    Get PDF
    The hydroxyl radical (OH) removes most atmospheric pollutants from air. The loss frequency of OH radicals due to the combined effect of all gas-phase OH reactive species is a measureable quantity termed total OH reactivity. Here we present total OH reactivity observations in pristine Amazon rainforest air, as a function of season, time-of-day and height (0–80 m). Total OH reactivity is low during wet (10 s^(−1)) and high during dry season (62 s^(−1)). Comparison to individually measured trace gases reveals strong variation in unaccounted for OH reactivity, from 5 to 15% missing in wet-season afternoons to mostly unknown (average 79%) during dry season. During dry-season afternoons isoprene, considered the dominant reagent with OH in rainforests, only accounts for ~20% of the total OH reactivity. Vertical profiles of OH reactivity are shaped by biogenic emissions, photochemistry and turbulent mixing. The rainforest floor was identified as a significant but poorly characterized source of OH reactivity

    Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments

    Get PDF
    Methyl ethyl ketone (MEK) enters the atmosphere following direct emission from vegetation and anthropogenic activities, as well as being produced by the gas-phase oxidation of volatile organic compounds (VOCs) such as n-butane. This study presents the first overview of ambient MEK measurements at six different locations, characteristic of forested, urban and marine environments. In order to understand better the occurrence and behaviour of MEK in the atmosphere, we analyse diel cycles of MEK mixing ratios, vertical profiles, ecosystem flux data, and HYSPLIT back trajectories, and compare with co-measured VOCs. MEK measurements were primarily conducted with proton-transfer-reaction mass spectrometer (PTR-MS) instruments. Results from the sites under biogenic influence demonstrate that vegetation is an important source of MEK. The diel cycle of MEK follows that of ambient temperature and the forest structure plays an important role in air mixing. At such sites, a high correlation of MEK with acetone was observed (e.g. r2 = 0.96 for the SMEAR Estonia site in a remote hemiboreal forest in Tartumaa, Estonia, and r2 = 0.89 at the ATTO pristine tropical rainforest site in central Amazonia). Under polluted conditions, we observed strongly enhanced MEK mixing ratios. Overall, the MEK mixing ratios and flux data presented here indicate that both biogenic and anthropogenic sources contribute to its occurrence in the global atmosphere

    How the OH reactivity affects the ozone production efficiency: case studies in Beijing and Heshan, China

    Get PDF
    Total OH reactivity measurements were conducted on the Peking University campus (Beijing) in August 2013 and in Heshan (Guangdong province) from October to November 2014. The daily median OH reactivity was 20 ± 11 s^(−1) in Beijing and 31 ± 20 s^(−1) in Heshan, respectively. The data in Beijing showed a distinct diurnal pattern with the maxima over 27 s^(−1) in the early morning and minima below 16 s^(−1) in the afternoon. The diurnal pattern in Heshan was not as evident as in Beijing. Missing reactivity, defined as the difference between measured and calculated OH reactivity, was observed at both sites, with 21 % missing reactivity in Beijing and 32 % missing reactivity in Heshan. Unmeasured primary species, such as branched alkenes, could contribute to missing reactivity in Beijing, especially during morning rush hours. An observation-based model with the RACM2 (Regional Atmospheric Chemical Mechanism version 2) was used to understand the daytime missing reactivity in Beijing by adding unmeasured oxygenated volatile organic compounds and simulated intermediates of the degradation from primary volatile organic compounds (VOCs). However, the model could not find a convincing explanation for the missing reactivity in Heshan, where the ambient air was found to be more aged, and the missing reactivity was presumably attributed to oxidized species, such as unmeasured aldehydes, acids and dicarbonyls. The ozone production efficiency was 21 % higher in Beijing and 30 % higher in Heshan when the model was constrained by the measured reactivity, compared to the calculations with measured and modeled species included, indicating the importance of quantifying the OH reactivity for better understanding ozone chemistry

    Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity

    Get PDF
    The hydroxyl radical (OH) removes most atmospheric pollutants from air. The loss frequency of OH radicals due to the combined effect of all gas-phase OH reactive species is a measureable quantity termed total OH reactivity. Here we present total OH reactivity observations in pristine Amazon rainforest air, as a function of season, time-of-day and height (0-80 m). Total OH reactivity is low during wet (10s-1) and high during dry season (62s-1). Comparison to individually measured trace gases reveals strong variation in unaccounted for OH reactivity, from 5 to 15% missing in wet-season afternoons to mostly unknown (average 79%) during dry season. During dry-season afternoons isoprene, considered the dominant reagent with OH in rainforests, only accounts for ∼20% of the total OH reactivity. Vertical profiles of OH reactivity are shaped by biogenic emissions, photochemistry and turbulent mixing. The rainforest floor was identified as a significant but poorly characterized source of OH reactivity
    corecore