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Abstract. The primary and most important oxidant in the at-
mosphere is the hydroxyl radical (OH). Currently OH sinks,
particularly gas phase reactions, are poorly constrained. One
way to characterize the overall sink of OH is to measure
directly the ambient loss rate of OH, the total OH reac-
tivity. To date, direct measurements of total OH reactivity
have been either performed using a Laser-Induced Fluores-
cence (LIF) system (“pump-and-probe” or “flow reactor”) or
the Comparative Reactivity Method (CRM) with a Proton-
Transfer-Reaction Mass Spectrometer (PTR-MS). Both tech-
niques require large, complex and expensive detection sys-
tems. This study presents a feasibility assessment for CRM
total OH reactivity measurements using a new detector, a Gas
Chromatographic Photoionization Detector (GC-PID). Such
a system is smaller, more portable, less power consuming
and less expensive than other total OH reactivity measure-
ment techniques.

Total OH reactivity is measured by the CRM using a com-
petitive reaction between a reagent (here pyrrole) with OH
alone and in the presence of atmospheric reactive molecules.
The new CRM method for total OH reactivity has been tested
with parallel measurements of the GC-PID and the previ-
ously validated PTR-MS as detector for the reagent pyr-
role during laboratory experiments, plant chamber and bo-
real field studies. Excellent agreement of both detectors was
found when the GC-PID was operated under optimum con-
ditions. Time resolution (60–70 s), sensitivity (LOD 3–6 s−1)
and overall uncertainty (25 % in optimum conditions) for to-
tal OH reactivity were similar to PTR-MS based total OH
reactivity measurements. One drawback of the GC-PID sys-
tem was the steady loss of sensitivity and accuracy during

intensive measurements lasting several weeks, and a possible
toluene interference. Generally, the GC-PID system has been
shown to produce closely comparable results to the PTR-MS
and thus in suitable environments (e.g. forests) it presents a
viably economical alternative for groups interested in total
OH reactivity observations.

1 Introduction

The hydroxyl radical (OH) is the most effective oxidant in the
atmosphere. Due to its high reactivity, OH is thought to act
as a cleaning agent, initiating the photochemical processes
leading to removal of chemicals from the atmosphere. The
tropospheric OH radical budget has been analyzed in several
atmospheric studies via simultaneous measurements of OH
sources (photolysis of ozone (O3), formaldehyde (HCHO),
nitrous acid (HONO), e.g.Logan et al., 1981; Mahajan
et al., 2011; Kleffmann et al., 2005), the in-situ OH con-
centration using Laser-Induced Fluorescence (LIF), Chem-
ical Ionization Mass Spectrometry (CIMS) or Differential
Optical Laser Absorption Spectroscopy (DOAS), (Schlosser
et al., 2009) and the sum of all OH sinks (total OH reac-
tivity). The total OH reactivity is the total loss rate of OH
due to all atmospheric OH reactive species (Di Carlo et al.,
2004). This total sink has proven most difficult to constrain
and direct measurements of total OH reactivity have be-
come an important and much coveted technique for studying
atmospheric chemistry.

As a direct approach for the total sink of OH, total OH re-
activity measurements help to understand the role of various
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Table 1.Three basic principles for direct total OH reactivity measurements, the uncertainties, detection limit and time resolution.

Basic principle Uncertainty Detection Time
limit resolution

Pump-and-probe Production of artificially high OH with 10–12 % 1–2 s−1 30–180 s
LIF a flash photolysis beam and detection

of the OH decay with LIF
Discharge flow Inject high OH levels with a movable inlet 16–25 % 1 s−1 210 s
tube LIF and monitor OH with LIF after different

reaction times (different inlet positions)
Comparative Monitor the change in a reagents concentrat- 16–20 % 3–4 s−1 10–60 s
Reactivity Method ion for the reaction of the reagent + OH with

and without the presence of atmospheric
reactive molecules

sinks and sources that balance the OH budget (Martinez
et al., 2003). Furthermore, the relative contribution of various
reactive volatile organic compounds (VOCs) to the total loss
rate of OH may be examined (Lou et al., 2010; Sinha et al.,
2010; Kato et al., 2011). By comparing the OH reactivity
contribution from individually measured compounds, model
results and the measured total OH reactivity, completeness of
measured species can be investigated. Unknown or unmea-
sured constituents may play an important role in tropospheric
OH and ozone budgets (e.g.Di Carlo et al., 2004; Mao et al.,
2010; Sinha et al., 2012).

Total OH reactivity measurements are currently performed
with three methods, which are described below and summa-
rized in Table1.

The first direct measurements of atmospheric total OH re-
activity were carried out byCalpini et al.(1999) andJean-
neret et al.(2001). Later the “pump-and-probe” technique
was improved bySadanaga et al.(2004). In this config-
uration, a pump laser photolyzes ozone to produce artifi-
cially high OH. Due to the reaction with reactive atmospheric
molecules the OH decays. The rate of decay is detected by
Laser-Induced Fluorescence (LIF) in a low pressure cell, and
can be used to derive the lifetime of atmospheric OH, hence
the total OH reactivity. The “pump-and-probe” LIF is capa-
ble of operating fast (30–180 s averaging time), with a detec-
tion limit of 1–2 s−1, and an overall uncertainty of 10–12 %
(Sadanaga et al., 2004; Lou et al., 2010).

Kovacs and Brune(2001) reported a second method to di-
rectly monitor the total OH reactivity which was also based
on LIF, but employed a different system of generating OH
namely a discharge flow technique. In the first step OH is
produced by a mercury UV lamp in a movable inlet and
injected into a large flow-tube. After mixing with ambient
air, OH is analyzed downstream using LIF. Then, the injec-
tor is pulled back in multiple steps. Due to longer mixing-
and hence longer reaction times, the detected OH concentra-
tions change. Observing the decay of OH at different reaction
times, allows the determination of the overall loss rate of OH
down to a detection limit of 1 s−1 within a time resolution of

210 s. The uncertainty for this technique is roughly 16–25 %
(Kovacs and Brune, 2001; Mao et al., 2010).

A third method, proposed bySinha et al.(2008), uses
a competitive reaction of artificially produced OH radicals
with a reagent which is not present in ambient air and all
OH reactive atmospheric species. The Comparative Reactiv-
ity Method (CRM) compares the reagent’s mixing ratio af-
ter reacting with OH in zero air and in the presence of am-
bient air. A suitable detector is used to measure the mix-
ing ratio of the reagent before and after the competitive
reactions. Different combinations of reagent and detector
can be chosen for the CRM according to the required in-
strumental characteristics (Sinha et al., 2008). Pyrrole was
found to be reasonable for ground based ambient continen-
tal measurements. However, for biomass burning (pyrrole
emissions), airborne based (high and low total OH reactiv-
ities), or marine studies (extremely low total OH reactivi-
ties) a different reagent would be valuable. Hence, based on
the user’s needs and the available detection system, another
suitable reagent can be chosen. In the current CRM based
instruments under atmospheric conditions pyrrole functions
as the reagent and a PTR-MS (IONICON, Austria) as the
detector. Using a PTR-MS for total OH reactivity mea-
surements provides a time resolution of 10–60 s, sensitiv-
ity down to 3–4 s−1 detection limit, overall relative uncer-
tainty of 16–20 % and good stability (Sinha et al., 2012;
Nölscher et al., 2012). However, the PTR-MS instrument is
big (650× 1660× 550 mm), heavy (150 kg) and expensive
(ca. 180 000C). For field measurements it would be desirable
to use a small, more portable and less expensive measure-
ment device in order to make the total OH reactivity mea-
surement accessible to more practitioners.

The potential of a custom built GC-PID (VOC-Analyzer
from IUT-Berlin, now Environics-IUT GmbH) for total OH
reactivity measurements using CRM is assessed in this study.
The GC-PID is small (260× 160× 400 mm), light (8 kg),
provides a good time resolution (60–70 s) and is less expen-
sive (18 000C). It requires no external carrier gas, and an in-
ternal battery provides power for ca. 12 h, making it suitable
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for field campaigns. The detection limit for pyrrole is 3 ppb,
and total OH reactivity can be measured under best condi-
tions down to 3 s−1 (6 s−1 worst case, see Sect.3.3). The
new GC-PID set up has been tested in parallel to previously
validated PTR-MS measurements for CRM in laboratory ex-
periments, a plant chamber, and boreal forest field studies
(Sect.3.2). Advantages and drawbacks of the new technique
are discussed.

2 Experimental

2.1 The Comparative Reactivity Method – basic
principle

Total OH reactivity measurements by the Comparative Reac-
tivity Method (CRM) are based on the competitive reaction
between OH and a reagent, which is not present in ambient
air, and atmospheric OH reactive compounds. The reagent
is introduced into a Teflon coated glass reactor, diluted with
zero air and quantified with a suitable detector (concentration
level C1). Next, OH molecules are generated by photolyz-
ing water vapor with a Pen-Ray® mercury UV lamp and in-
troduced into the reactor. The reaction of the reagent with
OH decreases the amount of detectable molecules leading to
a second concentration level (C2). By exchanging zero air
with ambient air multiple other OH reactive molecules are in-
troduced into the reactor and these compete with the reagent
for the OH present. This results in a concentration change
(concentration level C3) which depends on the OH reactivity
of the atmospheric composition. The following equation pro-
vides the total OH reactivity of airRair (Sinha et al., 2008).

Rair = C1× kR+OH ×
(C3−C2)

(C1−C3)
(1)

Where C1, C2, C3 are the different concentration levels and
kR+OH is the reaction rate coefficient of the reagent with
OH. For ambient measurements a range of total OH re-
activity from 0 to 100 s−1 (unpolluted) and 200 s−1 (pol-
luted) has been measured (Shirley et al., 2006; Lou et al.,
2010). In this range pyrrole (C4H5N) acts as suitable reagent
molecule. Its reaction rate coefficient to OH is comparable
to many atmospheric constituents. The exact value has re-
cently been measured byDillon et al. (2012) and found to
be weakly temperature and pressure dependent. For a more
precise examination in a low-OH reactivity environment an-
other reagent, which reacts more slowly with OH, could be
used. Typical mixing ratios of pyrrole before the reaction
with OH are 30–100 ppbV, after the reaction 10–30 ppbV
depending on flow rates, humidity and intensity of the UV
lamp. This corresponds to an OH field in the reactor of
ca. 1012 molecules cm−3. The ratio of pyrrole to OH usually
ranges from 1.7 to 3.0.

To calculate the total OH reactivity from the differ-
ent measurement steps, each concentration level needs to
be evaluated:

1. Hysteresis, due to switching valves, unsynchronized de-
tectors (inducing transitory changes in the signal of typ-
ically 0.5–10 s), or turning on the UV lamp initially (at
least half an hour for warming up), causes artificial and
misleading data points. These need to be excluded from
any analysis.

2. Sensitivity changes of the detector in general compli-
cate the measurements. Rapid jumps need to be ex-
cluded, while slowly decreasing sensitivity must be ac-
counted for by calibrations.

3. To correct for different humidity levels in C2 and C3,
a humidity-response calibration needs to be done. For
this, different water levels can be applied to the mea-
surement of C2, which result in variations of the OH
production. This calibration can be used to correct parts
of the data, where baseline (C2) and measurements
(C3) consistently show different humidity levels. Sharp
peaks in ambient humidity and rapid changes should be
filtered from the dataset.

4. A correction to account for deviations from pseudo first
order conditions is necessary using CRM as was already
described bySinha et al.(2008). Since CRM measure-
ments usually contain a mixture of pyrrole/OH about
1.7–3.0 a small correction (ca. 8 %) can be calculated
and applied.

5. NO might interfere in CRM total OH reactivity mea-
surements due to its OH recycling potential. As pre-
sented inSinha et al.(2008), levels higher than 10 ppbV
NO need to be present in ambient air in order to impact
total OH reactivity measurements via CRM. A detailed
discussion of a CRM set up used for highly polluted en-
vironments is given inDolgorouky et al.(2012).

6. Flows inside the CRM system need to be regularly
checked and monitored. Thus a dilution factor for ambi-
ent air probes due to the addition of nitrogen and pyrrole
is easily obtained.

The uncertainty of CRM measurements is calculated through
a propagation of errors and depends on the uncertainty of the
reagent’s gas mixture, the error of the rate coefficient, the
flow variations, and the detector’s uncertainty.

2.2 Proton-Transfer-Reaction Mass Spectrometer
(PTR-MS) measurements for CRM

In-situ ambient measurements of total OH reactivity using
CRM require a precise, stable, and reasonably fast detec-
tor with good linearity over the measurement range. Thus,
in its first configuration, total OH reactivity was measured
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by CRM as described above using PTR-MS (Sinha et al.,
2008). This detector offers a fast response, reasonably pre-
cise measurements and an indication of water levels in the
analyzed gases (which is helpful for ambient, hence humid
measurements). The PTR-MS has been applied in various
fields of scientific and industrial interest (Lindinger et al.,
1998; de Gouw et al., 2004; Blake et al., 2009).

The basic principle can be described as follows: A hollow-
cathode discharge source generates H3O+ ions from water
vapor, which are introduced into a drift tube and mixed with
the air sample. Proton transfer from the H3O+ to the gas
molecules of interest occurs for compounds with higher pro-
ton affinity than water. The instrument is thus blind to N2
and O2, the main constituents of the atmosphere, but detects
a wide range of organic compounds. Proton transfer is a rel-
atively soft ionization method which limits the fragmenta-
tion of ions. In the drift tube an electric field accelerates the
positive ions through the gas mixture. The operating pres-
sure within the drift tube is typically 2.2 mbar and the total
voltage across the drift tube 600 V. A quadrupole mass spec-
trometer separates ions according to their protonated mass to
charge (m/z) ratios and a secondary electron multiplier de-
tects them.

For total OH reactivity measurements the protonated
reagent pyrrole is detected onm/z 68. In addition, primary
ions H3O+, water clusters, markers for impurities (such as
oxygen [m/z 32], methanol [m/z 33] and acetone [m/z 59])
and for noise (such as [m/z 24]) are monitored. An accu-
rate calibration for pyrrole is needed not only in dry but
also for humid air. It is known that the sensitivity of the
PTR-MS varies for several compounds with humidity.Sinha
et al.(2009) reported that the PTR-MS response to pyrrole is
weakly dependent on the water concentration. Its sensitivity
increases with relative humidity up to 30 %, but for higher
relative humidities the sensitivity of the PTR-MS to pyrrole
remains reasonably constant. Since total OH reactivity mea-
surements are deployed for variably humid ambient air, the
sensitivity dependence on humidity needs to be determined
through calibration beforehand and applied during data anal-
ysis.

Using the PTR-MS as a detector provides measurement
points with a time resolution between 10–60 s and a limit of
detection of 3–4 s−1 for total OH reactivity. This was cal-
culated as 2σ of the C2 noise and tested empirically by in-
troducing known OH reactivities to the system. CRM mea-
surements use relatively high levels of pyrrole (10 ppbV–
100 ppbV), so the absolute sensitivity towards the pyrrole
signal is not crucial. More important is the signal to noise ra-
tio and the stability of the detected concentrations levels (C1,
C2, C3) which are compared to each other for the calculation
(Eq.1).

2.3 A new detector for CRM total OH reactivity
measurements: a Gas Chromatographic
Photoionization Detector (GC-PID)

A custom-built GC-PID system (VOC-Analyzer from IUT-
Berlin, now Environics-IUT GmbH) for total OH reactivity
measurements has been developed to measure the mixing ra-
tio of pyrrole comparable in quality and quantity to those
obtained by PTR-MS. Compared to commercially avail-
able systems, sensitivity was improved, interferences were
minimized, and the separation between peaks of interest
(here:pyrrole) was optimized.

The instrument operates as follows: a small sampling
pump continuously draws air through a particle filter into
the system (50–250 sccm). For analysis a sample is swept
through a short capillary GC column to separate the various
volatile organic compounds (VOCs) and water. In the detec-
tion cell the separated molecules are selectively ionized by
UV light (e.g. aromatics, alkenes). Ions are formed and ac-
celerated to a collector electrode by a weak electric field. In
this system the ambient air itself acts as carrier gas eliminat-
ing the need for compressed gases. Due to a switching valve
the inlet flow stops briefly after each sampling period, i.e.
after each chromatogram. This does not impact the stability
on the GC-PID and the detection of pyrrole. Column, valves
and the detector are situated in a temperature controlled box
to keep it isotherm. One chromatogram is generated, moni-
tored and automatically saved every 60–70 s. The instrument
records the raw signal of the chromatogram as well as a cali-
brated value in ppbV using the peak height and a previously
determined calibration factor. The peak area was analyzed
off-line using a custom-made IDL software provided cour-
tesy of the University Frankfurt (“IAU chrom”), which fits
Gaussian curves to the peak and integrates the area of this
Gaussian fit. Given an accurate calibration for pyrrole, the
mixing ratio can be reliably determined from the peak area.

A typical chromatogram is presented in Fig.1. An offset of
500–2000 counts was observed, which depended on the con-
dition of the instrument. The offset is typically caused by sev-
eral effects: (1) traces of ionizable compounds, e.g from out-
gasing material, are detected in addition to the analyzed sam-
ple, (2) UV radiation induces a photo-effect on the collector,
(3) the detector has some electrical noise. The retention time
of pyrrole ranged between 1000–2000 in the given units (cor-
responding to 35–55 s). When operating in ambient air addi-
tionally a water peak was found at 400–1000 a.u. retention
time. This water peak was inverted with respect to pyrrole
(it decreased the signal) and needs to be well separated from
the pyrrole peak. Water absorbs in the UV and shields en-
ergy available for ionization causing the background signal
(offset) in the detection cell to drop.

Many other chemicals are in principal detectable by the
GC-PID. These include toluene, benzene and acetone, all
of which are common compounds of ambient air. Because
of the fast sampling and the relatively short chromatogram,
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Fig. 1.Typical GC-PID chromatogram of pyrrole in humid air. Pyr-
role is detected in a retention window of 1000–2000 a.u. (35–55 s)
and needs to be well separated from the water peak (400–1000 a.u.).
Added is the Gaussian fit for peak integration in red and the applied
baseline in blue. It can be noted that the baseline is slightly tilted
due to the water peak.

the separation is not perfect and substances besides pyrrole
can potentially interfere within the same retention time win-
dow. As can be seen in Fig.2, four substances show clear
peaks: acetone, benzene, toluene and pyridine. Other com-
pounds such asα-pinene, methanol and a xylene-mixture did
not show peaks in the analyzed sample. To identify the peak
positions as shown in Fig.2 head space of the pure liquid
compounds, hence extremely high levels (about several hun-
dred ppbV to low ppmV), were introduced to the instrument.
By comparing Figs.1 and2, it can be noted that the pyrrole
peak is shifted in retention time. Depending on temperature,
different sampling conditions, and the state of the instrument,
pyrrole might occur at slightly different times. The analysis
software takes this effect into account, and has no problem,
since pyrrole is the only peak to integrate.

For total OH reactivity measurements the pyrrole retention
time window needs to be free of significant interferences.
Atmospheric interference candidates are toluene (ambient
concentrations 0.1–1 ppbV), since its retention time overlaps
with pyrrole, or pyrrole itself when being emitted by biomass
burning (Karl et al., 2007). It is worth noting that pyrrole con-
centrations for CRM measurements are significantly higher
(see Sect.2.1). If necessary a background correction can be
easily made by alternating between ambient measurements
(without introducing pyrrole to the system) and total OH
reactivity measurements. This assumes that the interference
species does not vary significantly between the background
tests.

Two calibration plots for pyrrole are given in Figs.3 and4.
For both calibrations good linearity could be found, the fit-
quality, the Pearson R, is almost 1. The linear fit provides
a slope which is a proxy for the sensitivity of the instru-
ment and an offset which is caused by the level of noise.
Standard tests have shown that pyrrole mixing ratios down to
3 ppbV are detectable by the instrument, when it is running
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ping with the pyrrole retention time window. Chromatograms for
substances tested subsequently to acetone show a rest-acetone peak.
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Fig. 3. Calibration plot for pyrrole that was introduced in different
mixing ratio levels and detected with the GC-PID. The peak area
was monitored and peak area integration averages were used to re-
ceive a calibration factor. Standard deviations of the averaged peak
areas were less than 4 %. Two points (blue) were monitored in hu-
mid air and compared to dry results (black).

in optimum conditions (e.g. as was for Fig.3). This is suf-
ficient for CRM measurements where pyrrole is expected in
the range of 10–100 ppbV.

For ambient, hence humid air the instrument must pro-
vide the same linear performance in pyrrole detection as for
dry conditions (as in Fig.3). The characteristic water peak
(Fig. 1) drives the signal negative at a retention time of 400–
1000 a.u. and has the potential to drag down the baseline,
which is used to fit the pyrrole peak. In such cases the inte-
grated peak area of pyrrole could be overestimated. This can
be seen in Fig.3 where two additional calibration points were
recorded in humid conditions, and pyrrole was not well sepa-
rated from the water peak. For a relative humidity of 27 % the
integrated peak area was increased by 12 %. To correct the
humidity dependency, in case of not well separated peaks,
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Fig. 4.Three different calibrations for pyrrole within ten days inten-
sive measurements at the HUMPPA-COPEC 2010 field campaign:
for optimized conditions at the start of the campaign (black), five
days later (blue) and after ten days intensive measurement campaign
(red). After five days less than 10 % deviation of the first calibration
curve could be observed. After ten days sensitivity was decreased
by 35 %.

a factor can be determined through calibration beforehand.
This correction is easy to apply as long as humidity in mea-
sured alongside with the GC-PID. For independent measure-
ments a good separation is mandatory. This can be achieved
by lengthening the chromatographic separation (e.g. to 60–
70 s), which improves the division of water and pyrrole but
lowers the sampling frequency.

During an intensive field campaign frequent calibrations
proved that over several (ten) days the sensitivity of the in-
strument did not change much. The GC-PID was started in
optimal conditions and ran nonstop for ambient measure-
ments. As can be seen from Fig.4, a repetition of pyrrole
calibration after five days matches exactly the previous re-
sults (less than 10 % deviation of the first calibration), while
after ten days the sensitivity has slightly decreased (devia-
tion of 35 %). Sensitivity can possibly be lost for three rea-
sons: (1) the particle filter loses its efficiency with time;
(2) the PID window gets coated by photopolymerizing pyr-
role (Cruz et al., 1999; Yang and Lu, 2005) weakening the
ionization efficiency; (3) on the long-term the detector ages
and shows decreasing sensitivity. During field campaigns it
is possible to exchange the particle filter and to regularly
calibrate. Decreasing sensitivity can be compensated by ex-
tending averaging times for a while. However, after intensive
measurements over a long period (e.g. 1 yr), the instrument
needed maintenance such as cleaning the PID window and
exchanging the detector to remain operational.

2.4 Modifications to the CRM set up

Since the original publication of the CRM method, a num-
ber of design improvements have been realized. Figure5
presents a schematic of the current operated CRM set up.

A process controlling device (V25) switches automatically
between different concentration levels (C1, C2, C3). Pyrrole

is introduced directly before the reactor into the air stream
which either provides clean air for baseline measurements
(C2) or ambient air (C3). To produce OH another arm to the
reactor contains a Pen-Ray® mercury UV lamp (184.9 nm),
which is sheathed in a flow of either dry (no OH production,
e.g. C1) or humidified nitrogen (OH production, e.g. C2 or
C3).

One major change to the original set up (Sinha et al., 2008)
is the position of the sampling pump (Pump). It is now in-
stalled downstream of the reactor, and draws ambient air
samples into the reactor without passing through a pump be-
forehand. This avoids possible total OH reactivity loss in the
pump. Thus ambient air is introduced unperturbed into the
system and reacts with the generated OH. Downstream of
the reactor, only the quantification of the pyrrole mixing ra-
tio is necessary for total OH reactivity measurements. The
Teflon pump which is used here has been proven to not af-
fect the amount of pyrrole led through it. Pyrrole levels up
and downstream to the pump were detected to be equal in
several tests.

These changes cause the reactions to proceed at slightly
lower pressure in the reactor than ambient (1–4 hPa lower).
Therefore, it has to be ascertained that the system is leak free,
which was routinely controlled by injecting methanol at con-
necting parts, and checking the flow rates. All concentration
levels (C1, C2, C3) need to be equal in pressure and flow
conditions inside the reactor.

In Fig. 5 it can be seen that a three-way valve (Teflon)
upstream of the reactor provides clean air (C2) or the ambient
sample (C3). Both, the pump controlling the inlet flow (Pump
C3) and another pump at the zero-air side (Pump C2), have
to be adjusted carefully in order to provide the same pressure
and flow through the reactor for all concentration levels. The
additional pump (Pump C2) is needed to reduce the pressure
at the clean air, the C2 side. Otherwise, clean air would be
pushed with ambient pressure into the reactor through the
catalytic converter by Pump C3, or the mass flow controller
for synthetic air.

To avoid humidity effects in the reactor, meaning differ-
ent water concentrations in measurements (C3) and base-
line (C2) leading to different OH concentrations, a catalytic
converter (CAT) was used to generate zero air with ambi-
ent humidity levels. The catalytic converter effectively trans-
formed ambient molecules to corresponding oxides, e.g. CO2
and H2O. The resulting water was minor in comparison to
ambient air levels. A sensor for humidity (RH) in the ex-
haust and the PTR-MS water signal (e.g.m/z 37) showed
equal humidity levels for both C2 and C3 measurements.
For extremely rapid changes of the humidity between two
baseline C2 measurements, data were excluded from analy-
sis later. The scrubbing efficiency was found to be high for
all operating conditions. Please note that the CRM used here
was optimized to operate in natural, biogenically influenced,
high reactivity environments. At such sites VOCs, which are
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Fig. 5. Schematic of the Comparative Reactivity Method (CRM), as it was set up for all presented tests and field campaigns. Two detectors
(PTR-MS, GC-PID) were probing in parallel the outflow of the reactor. Mass flow controllers (MFC), valves and a catalytic converter (CAT)
were operated by a controlling devise V25. This also recorded the measurement positions (C1, C2, C3) as well as temperature (T ) and
pressure (P ) inside the system and relative humidity (RH).

effectively destroyed in the converter, dominate the total OH
reactivity. For measurements in polluted regions with high
levels of SO2 and NO2, which cannot be scrubbed by a typ-
ical catalytic converter, another set up is necessary. As an
alternative to the catalytic converter, synthetic air can be hu-
midified to ambient water levels, and used for background
measurements.

Temperature and pressure have been monitored and ap-
plied in the total OH reactivity calculations afterwards.

As in the original set up, short Teflon lines and Teflon
valves were implemented. In addition the glass reactor was
coated with Teflon, to minimize surface induced hysteresis
of humidity and pyrrole levels. The Teflon coating also min-
imizes the loss of OH reactive species to the walls of the
reactor. The lines providing pyrrole from the gas standard
(10.1 ppmV in nitrogen) were shielded from light in order to
avoid photolytic loss.

The inlet flow of the CRM can be chosen in a range
between 350 sccm (chamber measurements) and 5000 sccm
(fast flushing inlets). Overall 330 sccm were pumped through
the reactor, including 100 sccm nitrogen and 1.8 sccm pyr-
role. Under these conditions the reactor mixture contained
70 % of the ambient air sample, which optimized the CRM
for operation in relatively clean, biogenic environments.

3 Results

Parallel measurements of PTR-MS and GC-PID as detector
for CRM total OH reactivity observations were carried out in
the laboratory, the Finnish boreal forest and a plant chamber.
The instruments’ limitations and advantages were revealed
through comparison under different conditions. As visual in-
tercomparison both detectors are pictured in Fig.6.

3.1 Standard measurements

To verify the reliability of the two detector systems for
CRM total OH reactivity measurements, standard tests were
conducted in a series of laboratory and field experiments
spanning over one year. The calibration gases employed for
determination of OH reactivity were propane and propene
(32 890 ppbV, 596 ppbV, respectively) in nitrogen. Both
were diluted in zero air and individually introduced into the
reactor of the system. Comparing the theoretically expected
OH reactivity and the measured OH reactivity established
that both methods generated reasonable and comparable re-
sults. With respect to the theoretically expected total OH re-
activity from the standard gas mixtures, the PTR-MS mea-
surements reached 97 % and the GC-PID values 92 %. Both
instruments slightly underestimated the true total OH reactiv-
ity (as compared to the stated values on the calibration bottle)
by less than 10 % in the presented tests. Hence, both detec-
tors responded accurately and within the uncertainty when
used for CRM measurements.
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Fig. 6. Two detectors for CRM total OH reactivity measurements:
To the right the IONICON PTR-MS, to the left the GC-PID.

Figure 7 compares the response of the two detectors in
a OH reactivity range from 3–30 s−1. A linear regression
gives a slope ofm = 0.92 and a low offset, which is smaller
than the limit of detection for both instruments. Both detec-
tors show very good correlation to each other, hence agree
in the measured total OH reactivity from standard measure-
ments.

3.2 Field measurements – HUMPPA-COPEC 2010

In summer 2010 an intensive field measurement campaign
(HUMPPA-COPEC 2010) at the Finnish boreal forest station
SMEAR II in Hyytiälä took place in order to characterize di-
rect biogenic emissions and photochemical reaction products
in the gas phase as well as the particulate phase. A detailed
description of the field site, instruments and an overview of
some results can be found inWilliams et al. (2011). Dur-
ing this campaign the CRM was implemented to monitor
total OH reactivity at two different heights (in and above
the forest canopy). These results are presented inNölscher
et al. (2012). The HUMPPA-COPEC campaign in summer
2010 provided an excellent opportunity for the first intensive
tests within a field campaign of the GC-PID in parallel with
a PTR-MS as detector for total OH reactivity measurements.

Since the measurement site was surrounded by boreal
forest, little toluene interference was expected as toluene
is thought to be predominantly anthropogenically emitted.
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Fig. 7.Correlation plot and linear least squares fit for standard mea-
surements of PTR-MS and GC-PID in parallel as detector for total
OH reactivity. As standard gas propane and propene have been in-
troduced into the system in a known amount and the total OH reac-
tivity was detected with both instruments.

Nevertheless, frequent tests (several times a day) without
pyrrole were performed but did not show any significant
enhanced background within the pyrrole retention window.
Even during the influence of an aged biomass burning plume
no pyrrole or pyrrole interfering peak could be detected
(Nölscher et al., 2012). Furthermore, independent ambient
PTR-MS measurements made in parallel showed extremely
low toluene mixing ratios (less than 0.4 ppbV) and no evi-
dence for pyrrole either. Figure8 presents a comparison of
the directly measured total OH reactivity inside the canopy
for both instruments at the end of the campaign (7 Au-
gust 2010–8 August 2010).

Diel variation was weak for 7 August 2010, a rainy and tur-
bulent day. Total OH reactivity reached highest values shortly
after a storm, as the boundary layer height started to decrease.
A stronger signal for total OH reactivity was found the fol-
lowing day when maximum values of 40 s−1 were observed
in the late afternoon. As the day before, this day was stormy
but warmer. Between strong rain showers high boreal forest
emissions due to irradiation and high temperatures (which
typically drive the VOC emissions) are likely causing the
measured total OH reactivity to be high.

The GC-PID was operated in optimal conditions after
a break for maintenance during the campaign, meaning a re-
newed particle filter and a brand new detector. In this man-
ner, good time resolution and sensitivity could be achieved.
The PTR-MS ran stably for the four week intensive field
campaign. The two datasets have been handled equivalently
and averaged to 5 min values. The typical relative uncertainty
for total OH reactivity measured with GC-PID in this cam-
paign was 25 %, whereas the PTR-MS uncertainty was 16 %.
These values are calculated through a propagation of errors:
Three of the four parameters contributing to the measure-
ment uncertainty are the same for both detectors (uncertainty
of the reagent’s gas mixture (5 %), error of rate coefficient
(14 %), flow variations (2 %)). The instrumental error derived

Atmos. Meas. Tech., 5, 2981–2992, 2012 www.atmos-meas-tech.net/5/2981/2012/



A. C. Nölscher et al.: New total OH reactivity method 2989

40

35

30

25

20

15

10

5

0

T
ot

al
 O

H
 r

ea
ct

iv
ity

 [s
-1

]

00:00
07Aug10

12:00 00:00
08Aug10

12:00

Date and Time [utc+2]

 GC-PID (5 min averages)
 PTR-MS (5 min averages)

Fig. 8.Direct total OH reactivity measurements within the summer-
time boreal forest canopy during HUMPPA-COPEC 2010. Both de-
tectors were operated in parallel for CRM, the data were analyzed
and averaged to 5 min. PTR-MS (green) and GC-PID (black) show
good agreement in a total OH reactivity range from the limit of de-
tection to 40 s−1. The detection limit for both instruments during
this study was 3 s−1 and is highlighted in the graph as gray shaded
area.
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A linear least squares curve fit is given, its slope and the Pearson R
of the correlation between the two instruments.

as standard deviation of the averaged noise is for PTR-MS
results 5 %, and for the GC-PID 20 %. Both instruments op-
erated with the same detection limit of 3 s−1, which is the 2σ
of the baseline (C2) noise during total OH reactivity mea-
surements.

Generally PTR-MS and GC-PID values agree well with
each other within the observed total OH reactivity levels from
the limit of detection up to 40 s−1. This can also be seen
in Fig. 9 which presents the correlation and a linear fit of
the 5 min averaged data from PTR-MS and GC-PID for total
OH reactivity. The linear least squares fit shows good agree-
ment between the two detectors with a slope ofm = 0.93.
The offset of the linear fit lies within the error. The qual-
ity of the correlation, given by Pearson R, is close to 1.
Hence, both instruments were able to detect total OH reac-
tivity using CRM and were in good agreement. Moreover,
the instruments operated at comparable time resolution, de-
tection limit, and sensitivity.
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Fig. 10.Direct total OH reactivity measurements in the Jülich Plant
Atmospheric Chamber (JPAC) for primary boreal tree emissions.
The 15 min averaged results of the GC-PID (black) show the same
trend but a higher variability than the PTR-MS (green) 5 min aver-
ages. The gray shaded area marks the range of the PTR-MS detec-
tion limit (4 s−1) and the gray pattern the GC-PID detection limit
of 6 s−1.
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Fig. 11.Correlation of PTR-MS and GC-PID results (15 min aver-
ages) for total OH reactivity measured from boreal tree species in
the JPAC plant chamber. A linear least squares curve fit, its slope
and the quality of the correlation (Pearson R) are given.

3.3 Plant chamber measurements

The same set up as deployed in the HUMPPA-COPEC 2010
campaign was operated at the Jülich Plant Atmospheric
Chamber (JPAC) in September 2010. The total OH reactivity
system was installed at the plant chamber facility to examine
primary boreal tree emissions under controlled conditions.
Figure10 shows the results of both detectors’ measured to-
tal OH reactivity, averaged to 5 min (PTR-MS) and 15 min
(GC-PID) in a range of 15 s−1 down to the limit of detec-
tion. The plant emissions show a weak diel variation in to-
tal OH reactivity and overall low levels, which are for most
points below 8 s−1. Because of decreased sensitivity, lower
offset and higher noise, the GC-PID results had to be aver-
aged over a longer time period, and lost therefore in time
resolution. Still the GC-PID results fluctuate more, but show
the same overall trend as PTR-MS measurements. The detec-
tion limit of the GC-PID for these measurements was 6 s−1,
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Table 2.Detailed comparison of technical, instrumental and operational parameters of PTR-MS and GC-PID

PTR-MS GC-PID

Size 650× 1660× 550 mm 260× 160× 400 mm
Weight 150 kg 8 kg
Power max. 1500 W max. 50 W (+ internal battery for ca. 12 h)
Inlet flow 30–300 sccm (continuously, adjustable) 50–250 sccm (not continuously, adjustable)
Interferences/Challenges changing sensitivity with humidity changing sensitivity with humidity

possible toluene interference
Cost ca. 180 000C ca. 18 000C

Limit of detection 3–4 s−1 3–6 s−1

Uncertainty 16–20 % 25–46 %
Stability very good over several weeks decreasing after several weeks
Time resolution – raw 10–60 s 60–70 s
Time resolution – average 1–5 min 5–20 min

compared to 4 s−1 detection limit of the PTR-MS total OH
reactivity measurements. Again the limit of detection was
calculated as the 2σ of the baseline (C2) noise. The GC-
PID showed a less sensitive response to pyrrole when com-
pared to previous conditions. Directly after maintenance with
a new particle filter system (6 August 2010, Finland) the
conversion factor of peak area to pyrrole mixing ratio was
289.04 peak area ppbV−1, while after one month (9 Septem-
ber 2010) in J̈ulich it decreased to 276.89 peak area ppbV−1.
Because of a more noisy signal the overall uncertainty for the
plant chamber results was 46 % for the GC-PID. After one
month intensive field measurements in Finland during the
HUMPPA-COPEC campaign, shipping and re-installation
the plant chamber experiments present a worst case study for
the new GC-PID detector.

The correlation (Fig.11) of both detectors is more scat-
tered and the Pearson R coefficient shows positive but not
strong correlation (R = 0.51). A linear regression fit has
a slope of 1.01 but is not of good quality. This is mainly
because of the generally low level of detectable total OH
reactivity and less optimized conditions of the GC-PID.
When examining the instrument subsequently of the cam-
paign a layer on the detection PID window was observed and
removed by cleaning. With time pyrrole polymerized due to
UV radiation at the detection PID window, blocked trans-
mission and hence ionization. The instrument lost sensitivity
and noise increased. After the cleaning the GC-PID operated
again with improved sensitivity and accuracy.

4 Summary and comparison

A new detector for total OH reactivity measurements, a GC-
PID, using CRM was tested under various (optimum and
worst case) conditions. In general, the previously validated
PTR-MS results and the new GC-PID measurements showed
excellent agreement for standard tests and field observations
within the boreal forest (HUMPPA-COPEC 2010). For the

plant chamber experiments acceptable correlation was found.
Decreasing sensitivity and accuracy in the GC-PID instru-
ment were identified to be caused by polymerizing pyrrole at
the detection PID window.

Table2 summarizes technical and operational advantages
and disadvantages of both instruments. When compared to
the PTR-MS, the GC-PID is a smaller, lighter and less ex-
pensive instrument. The inlet flows for both instruments are
adjustable and comparable. Both systems show slight humid-
ity dependent sensitivity. This has been well characterized
by Sinha et al.(2009) for the PTR-MS and so the measure-
ments can be corrected. Calibrating with humid and dry air
also provides a correction factor for GC-PID ambient (wet)
measurements. For a good separation between the water and
pyrrole peaks, the GC-PID results are not influenced by wa-
ter. Lengthening the chromatogram improves the separation
but reduces the sampling frequency unless multiple detectors
are used asynchronously.

The second part of Table2 highlights details of the ap-
plication as detector for total OH reactivity measurements.
The overall uncertainty is lower in the PTR-MS and it also
shows good stability over long periods of measurement. The
time resolution of the PTR-MS raw signal can be very short,
i.e. only 10 s (when focusing on only a few detected masses).
In most applications it is averaged to 1 to 5 min. With this
time resolution the limit of total OH reactivity detection is 3–
4 s−1 for PTR-MS. Compared to this, under optimum condi-
tions, the GC-PID reaches the same detection limit and time
resolution, but has a higher overall uncertainty (25 %). With
less well optimized conditions, which can be expected when
running the instrument continuously over several weeks, the
uncertainty increases sharply (46 %) as well as the detection
limit (6 s−1). Then a longer averaging time is needed to gain
reasonable accuracy. However, a full maintenance of the GC-
PID prior to a campaign is advisable.

It should be noted that direct biomass burning emissions
(Warneke et al., 2011), urban emissions (Fortner et al., 2009)
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and some biogenic emissions (White et al., 2009) could af-
fect total OH reactivity measurements using GC-PID due to
high and variable toluene emissions that may interfere on
the pyrrole retention window. Under such conditions regu-
lar background determinations would be necessary with the
same (or a second GC-PID), detracting from the measure-
ment frequency (or doubling the costs). The boreal forest en-
vironment appears to be suitable for GC-PID determined to-
tal OH reactivity. This is in contrast to LIF techniques which
have recently reported serious concerns in the OH measure-
ment (Mao et al., 2012). It remains to be determined whether
this also impacts LIF OH reactivity results. Since the GC-
PID coupled CRM is a small and light instrument, even air-
borne related total OH reactivity measurements could be pos-
sible in the future.

Deploying the GC-PID as detector for direct total OH re-
activity measurements using CRM offers a robust, portable
and less expensive alternative to PTR-MS measurements.
Under optimized conditions very good agreement between
both instruments could be examined. A technically improved
version of the prototype GC-PID should also ensure that the
detector provides good sensitivity for a long time, it is easy to
handle and maintain regularly, and interferences with water
and toluene diminish. The newest version is already smaller,
lighter, better protected against water, optimized to separate
compounds of interest (pyrrole, water, toluene), and most im-
portantly, the lamp as well as the PID window are easily ac-
cessible. This way, maintenance of the instrument during a
field campaign can be performed by the operator at the site.
This makes the GC-PID a potentially useful method for total
OH reactivity measurements in field studies.
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Williams, J.: Inter-comparison between airborne measurements
of methanol, acetonitrile and acetone using two differently con-
figured PTR-MS instruments, Int. J. Mass Spectrom., 239, 129–
137,doi:10.1016/j.ijms.2004.07.025, 2004.

Di Carlo, P., Brune, W. H., Martinez, M., Harder, H., Lesher, R.,
Ren, X., Thornberry, T., Carroll, M. A., Young, V., Shep-
son, P. B., Riemer, D., Apel, E., and Campbell, C.: Missing OH
reactivity in a forest: evidence for unknown reactive biogenic
VOCs, Science, 304, 722–725,doi:10.1126/science.1094392,
2004.

Dillon, T., Tucceri, M., Dulitz, K., Horowitz, A., Vereecken, L., and
Crowley, J.: Reaction of Hydroxyl Radicals with C4H5N (Pyr-
role): Temperature and Pressure Dependent Rate Coefficients,
116, 6051–6058, doi:10.1021/jp211241x, 2012.

Dolgorouky, C., Gros, V., Sarda-Esteve, R., Sinha, V., Williams, J.,
Marchand, N., Sauvage, S., Poulain, L., Sciare, J., and Bonsang,
B.: Total OH reactivity measurements in Paris during the 2010
MEGAPOLI winter campaign, Atmos. Chem. Phys., 12, 9593–
9612, doi:10.5194/acp-12-9593-2012, 2012.

Fortner, E. C., Zheng, J., Zhang, R., Berk Knighton, W., Volka-
mer, R. M., Sheehy, P., Molina, L., and André, M.: Measurements
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