283 research outputs found

    Combining Anomaly and Z' Mediation of Supersymmetry Breaking

    Full text link
    We propose a scenario in which the supersymmetry breaking effect mediated by an additional U(1)' is comparable with that of anomaly mediation. We argue that such a scenario can be naturally realized in a large class of models. Combining anomaly with Z' mediation allows us to solve the tachyonic slepton problem of the former and avoid significant fine tuning in the latter. We focus on an NMSSM-like scenario where U(1)' gauge invariance is used to forbid a tree-level mu term, and present concrete models, which admit successful dynamical electroweak symmetry breaking. Gaugino masses are somewhat lighter than the scalar masses, and the third generation squarks are lighter than the first two. In the specific class of models under consideration, the gluino is light since it only receives a contribution from 2-loop anomaly mediation, and it decays dominantly into third generation quarks. Gluino production leads to distinct LHC signals and prospects of early discovery. In addition, there is a relatively light Z', with mass in the range of several TeV. Discovering and studying its properties can reveal important clues about the underlying model.Comment: Minor changes: references added, typos corrected, journal versio

    Mixed Mediation of Supersymmetry Breaking with Anomalous U(1) Gauge Symmetry

    Full text link
    Models with anomalous U(1) gauge symmetry contain various superfields which can have nonzero supersymmetry breaking auxiliary components providing the origin of soft terms in the visible sector, e.g. the U(1) vector superfield, the modulus or dilaton superfield implementing the Green-Schwarz anomaly cancellation mechanism, U(1)-charged but standard model singlet matter superfield required to cancel the Fayet-Iliopoulos term, and finally the supergravity multiplet. We examine the relative strength between these supersymmetry breaking components in a simple class of models, and find that various different mixed mediations of supersymmetry breaking, involving the modulus, gauge, anomaly and D-term mediations, can be realized depending upon the characteristics of D-flat directions and how those D-flat directions are stabilized with a vanishing cosmological constant. We identify two parameters which represent such properties and thus characterize how the various mediations are mixed. We also discuss the moduli stabilization and soft terms in a variant of KKLT scenario, in which the visible sector K\"ahler modulus is stabilized by the D-term potential of anomalous U(1) gauge symmetry.Comment: 30 pages, 5 figure

    Metastatic breast carcinoma mimicking a sebaceous gland neoplasm: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Breast cancer is common in women and its metastases involve the skin in approximately one quarter of patients. Accordingly, metastatic breast cancer shown to be cutaneous through histology must be distinguished from a wide variety of other neoplasms as well as the diverse morphologic variants of breast cancer itself.</p> <p>Case presentation</p> <p>We report the case of a 61-year-old Caucasian woman with cutaneous metastases of a bilateral ductal breast carcinoma that in histopathological examination mimicked an adnexal neoplasm with sebaceous differentiation.</p> <p>Conclusion</p> <p>Against the background of metastatic breast carcinoma, dermatopathological considerations of sebaceous differentiation of skin lesions are presented and discussed focusing on the rare differential diagnosis of sebaceous carcinoma of the breast.</p

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Anomaly Mediation and Cosmology

    Get PDF
    We consider an extension of the MSSM wherein anomaly mediation is the source of supersymmetry breaking, and the tachyonic slepton problem is solved by a gauged U(1) symmetry, which is broken at high energies in a manner preserving supersymmetry, thereby also facilitating the see-saw mechanism for neutrino masses and a natural source for the Higgs mu-term. We show that these favourable outcomes can occur both in the presence and the absence of a large Fayet-Iliopoulos (FI) D-term associated with the new U(1). We explore the cosmological consequences of the model, showing that it naturally produces a period of hybrid inflation, terminating in the production of cosmic strings. In spite of the presence of a U(1) (even with an FI term), inflation is effected by the F-term, with a D-flat tree potential (the FI term, if present, being cancelled by non-zero squark and slepton fields). Calculating the 1-loop corrections to the inflaton potential, we estimate the constraints on the parameters of the model from Cosmic Microwave Background data. We will see that a consequence of these constraints is that the Higgs mu-term necessarily small. We briefly discuss the mechanisms for baryogenesis via conventional leptogenesis, the out-of-equilibrium production of neutrinos from the cosmic strings, or the Affleck-Dine mechanism. Cosmic string decays also boost the relic density of dark matter above the low value normally obtained in AMSB scenarios.Comment: 34 pages. Revised to incorporate discussion of the case when the Fayet-Ilipoulos term is absen

    Increased Expression of the Auxiliary β(2)-subunit of Ventricular L-type Ca(2+) Channels Leads to Single-Channel Activity Characteristic of Heart Failure

    Get PDF
    BACKGROUND: Increased activity of single ventricular L-type Ca(2+)-channels (L-VDCC) is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary β-subunits as a possible explanation. METHODS AND RESULTS: By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression pattern of auxiliary L-VDCC β-subunit gene products. In HEK293-cells we show differential modulation of single L-VDCC activity by coexpression of several human cardiac β-subunits: Unlike β(1) or β(3) isoforms, β(2a) and β(2b) induce a high-activity channel behavior typical of failing myocytes. In accordance, β(2)-subunit mRNA and protein are up-regulated in failing human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac Ca(V)1.2 also reveal increased single-channel activity and sarcolemmal β(2) expression when entering into the maladaptive stage of heart failure. Interestingly, these animals, when still young and non-failing (“Adaptive Phase”), reveal the opposite phenotype, viz : reduced single-channel activity accompanied by lowered β(2) expression. Additional evidence for the cause-effect relationship between β(2)-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both constitutive Ca(V)1.2 and inducible β(2) cardiac overexpression. Here in non-failing hearts induction of β(2)-subunit overexpression mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure. CONCLUSIONS: Our study presents evidence of the pathobiochemical relevance of β(2)-subunits for the electrophysiological phenotype of cardiac L-VDCC and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure

    B cell depletion in autoimmune diabetes:insights from murine models

    Get PDF
    INTRODUCTION: The incidence of type 1 diabetes (T1D) is rising for reasons that largely elude us. New strategies aimed at halting the disease process are needed. One type of immune cell thought to contribute to T1D is the B lymphocyte. The first Phase II trial of B cell depletion in new onset T1D patients indicated that this slowed the destruction of insulin-producing pancreatic beta cells. The mechanistic basis of the beneficial effects remains unclear. AREAS COVERED: Studies of B cell depletion and deficiency in animal models of T1D. How B cells can influence T cell-dependent autoimmune diabetes in animal models. The heterogeneity of B cell populations and current evidence for the potential contribution of specific B cell subsets to diabetes, with emphasis on marginal zone B cells and B1 B cells. EXPERT OPINION: B cells can influence the T cell response to islet antigens and B cell depletion or genetic deficiency is associated with decreased insulitis in animal models. New evidence suggests that B1 cells may contribute to diabetes pathogenesis. A better understanding of the roles of individual B cell subsets in disease will permit fine-tuning of therapeutic strategies to modify these populations
    • …
    corecore