3 research outputs found

    Corals regulate the distribution and abundance of Symbiodiniaceae and biomolecules in response to changing water depth and sea surface temperature

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sivaguru, M., Todorov, L. G., Fouke, C. E., Munro, C. M. O., Fouke, K. W., Fouke, K. E., Baughman, M. E., & Fouke, B. W. Corals regulate the distribution and abundance of Symbiodiniaceae and biomolecules in response to changing water depth and sea surface temperature. Scientific Reports, 11(1), (2021): 2230, https://doi.org/10.1038/s41598-021-81520-0.The Scleractinian corals Orbicella annularis and O. faveolata have survived by acclimatizing to environmental changes in water depth and sea surface temperature (SST). However, the complex physiological mechanisms by which this is achieved remain only partially understood, limiting the accurate prediction of coral response to future climate change. This study quantitatively tracks spatial and temporal changes in Symbiodiniaceae and biomolecule (chromatophores, calmodulin, carbonic anhydrase and mucus) abundance that are essential to the processes of acclimatization and biomineralization. Decalcified tissues from intact healthy Orbicella biopsies, collected across water depths and seasonal SST changes on Curaçao, were analyzed with novel autofluorescence and immunofluorescence histology techniques that included the use of custom antibodies. O. annularis at 5 m water depth exhibited decreased Symbiodiniaceae and increased chromatophore abundances, while O. faveolata at 12 m water depth exhibited inverse relationships. Analysis of seasonal acclimatization of the O. faveolata holobiont in this study, combined with previous reports, suggests that biomolecules are differentially modulated during transition from cooler to warmer SST. Warmer SST was also accompanied by decreased mucus production and decreased Symbiodiniaceae abundance, which is compensated by increased photosynthetic activity enhanced calcification. These interacting processes have facilitated the remarkable resiliency of the corals through geological time.Financial support for this work was provided by the Office of Naval Research (N00014-00-1-0609), the Illinois Carl R. Woese Institute for Genomic Biology Undergraduate Summer Research Fellowship, the Illinois Carl R. Woese Institute for Genomic Biology Mark Tracy Fellowship for Translational Research, and the Illinois Department of Molecular and Cellular Biology Jenner Family Summer Research Fellowship and the Edward and Barbara Weil Research Fund provided to the University of Illinois Urbana-Champaign

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Acne and Genetics

    No full text
    corecore