231 research outputs found

    Geomorphic and Geochemical Evidence for the Source of Sand in the Algodones Dunes, Colorado Desert, Southeastern California

    Get PDF
    The Algodones dunes of southeastern California comprise one of the largest active dune fields in the United States. The source of sand of the Algodones dunes is controversial, and the source of stabilized aeolian sand in the adjacent East Mesa area has not been investigated at all. We used mineralogical compositions and trace element concentrations to ascertain the most likely source of sand for these active and stabilized dunes. Results indicate that alluvium derived from the San Bernardino Mountains, which enters the Salton trough to the northwest of the dune fields, and alluvium derived from the Chocolate Mountains, which is deposited immediately to the northeast of the dunes, do not appear to be significant sources of sediment for the Algodones and East Mesa dunes. Both active aeolian sand from the Algodones dunes and stabilized aeolian sand on East Mesa are probably derived from sediments of ancient Lake Cahuilla, which formerly occupied part of the Salton Trough and left sandy shoreline sediments to the west and northwest of where the dune fields are now found. Lake Cahuilla sediments, in tum, were apparently derived from the Colorado River, when the riyer shifted its course and emptied into the Salton Trough, rather than the Gulf of California

    Sea-level records at ~80 ka from tectonically stable platforms: Florida and Bermuda

    Get PDF
    Studies from tectonically active coasts on New Guinea and Barbados have suggested that sea level at ~80 ka was significantly lower than present, whereas data from the Atlantic and Pacific coasts of North America indicate an ~80 ka sea level close to that of the present. We determined ages of corals from a shallow submerged reef off the Florida Keys and an emergent marine deposit on Bermuda. Both localities are on tectonically stable platforms distant from plate boundaries. Uranium-series ages show that corals at both localities grew during the ~80 ka sea-level highstand, and geologic data show that sea level at that time was no lower than 7–9 m below present (Florida) and may have been 1–2 m above present (Bermuda). The ice-volume discrepancy of the 80 ka sea-level estimates is greater than the volume of the Greenland or West Antarctic ice sheets. Comparison of our ages with high-latitude insolation values indicates that the sea-level stand near the present at ~80 ka could have been orbitally forced

    Uranium-series age of the Eel Point terrace, San Clemente Island, California

    Get PDF

    Chemical Weathering of Loess and Its Contribution to Global Alkalinity Fluxes to the Coastal Zone During the Last Glacial Maximum, Mid‐Holocene, and Present

    Get PDF
    Loess sediments are windblown silt deposits with, in general, a carbonate grain content of up to 30%. While regionally, loess was reported to increase weathering fluxes substantially, the influence on global weathering fluxes remains unknown. Especially on glacial‐interglacial time scales, loess weathering fluxes might have contributed to land‐ocean alkalinity flux variability since the loess areal extent during glacial epochs was larger. To quantify loess weathering fluxes, global maps representing the loess distribution were compiled. Water chemistry of rivers draining recent loess deposits suggests that loess contributes over‐proportionally to alkalinity concentrations if compared to the mean of alkalinity concentrations of global rivers (~4,110 µeq L−1 for rivers draining loess deposits and ~1,850 µeq L−1 for the total of global rivers), showing comparable alkalinity concentration patterns in rivers as found for carbonate sedimentary rocks. Loess deposits, covering ~4% of the ice‐ and water‐free land area, increase calculated global alkalinity fluxes to the coastal zone by 16%. The new calculations lead to estimating a 4% higher global alkalinity flux during the Last Glacial Maximum (LGM) compared to present fluxes. The effect of loess on that comparison is high. Alkalinity fluxes from silicate‐dominated lithological classes were ~28% and ~30% lower during the LGM than recent (with loess and without loess, respectively), and elevated alkalinity fluxes from loess deposits compensated for this. Enhanced loess weathering dampens due to a legacy effect changes in silicate‐dominated lithologies over the glacial‐interglacial time scale

    Late Quaternary sea-level history and the antiquity of mammoths (\u3ci\u3eMammuthus exilis\u3c/i\u3e and \u3ci\u3eMammuthus columbi\u3c/i\u3e), Channel Islands National Park, California, USA

    Get PDF
    Fossils of Columbian mammoths (Mammuthus columbi) and pygmymammoths (Mammuthus exilis) have been reported from Channel Islands National Park, California. Most date to the last glacial period (Marine Isotope Stage [MIS] 2), but a tusk of M. exilis (or immature M. columbi) was found in the lowest marine terrace of Santa Rosa Island. Uranium-series dating of corals yielded ages from 83.8 ± 0.6 ka to 78.6 ± 0.5 ka, correlating the terrace withMIS 5.1, a time of relatively high sea level.Mammoths likely immigrated to the islands by swimming during the glacial periodsMIS 6 (~150 ka) orMIS 8 (~250 ka),when sea levelwas lowand the island–mainland distance was minimal, as during MIS 2. Earliest mammoth immigration to the islands likely occurred late enough in the Quaternary that uplift of the islands and the mainland decreased the swimming distance to a range that could be accomplished by mammoths. Results challenge the hypothesis that climate change, vegetation change, and decreased land area from sea-level rise were the causes of mammoth extinction at the Pleistocene/ Holocene boundary on the Channel Islands. Pre-MIS 2 mammoth populations would have experienced similar or even more dramatic changes at the MIS 6/5.5 transition

    U and Sr Isotopes in Ground Water and Calcite, Yucca Mountain, Nevada: Evidence Against Upwelling Water

    Full text link

    Diet-Induced Muscle Insulin Resistance Is Associated With Extracellular Matrix Remodeling and Interaction With Integrin α2β1 in Mice

    Get PDF
    OBJECTIVE: The hypothesis that high-fat (HF) feeding causes skeletal muscle extracellular matrix (ECM) remodeling in C57BL/6J mice and that this remodeling contributes to diet-induced muscle insulin resistance (IR) through the collagen receptor integrin α(2)β(1) was tested. RESEARCH DESIGN AND METHODS: The association between IR and ECM remodeling was studied in mice fed chow or HF diet. Specific genetic and pharmacological murine models were used to study effects of HF feeding on ECM in the absence of IR. The role of ECM-integrin interaction in IR was studied using hyperinsulinemic-euglycemic clamps on integrin α(2)β(1)-null (itga2(-/-)), integrin α(1)β(1)-null (itga1(-/-)), and wild-type littermate mice fed chow or HF. Integrin α(2)β(1) and integrin α(1)β(1) signaling pathways have opposing actions. RESULTS: HF-fed mice had IR and increased muscle collagen (Col) III and ColIV protein; the former was associated with increased transcript, whereas the latter was associated with reduced matrix metalloproteinase 9 activity. Rescue of muscle IR by genetic muscle-specific mitochondria-targeted catalase overexpression or by the phosphodiesterase 5a inhibitor, sildenafil, reversed HF feeding effects on ECM remodeling and increased muscle vascularity. Collagen remained elevated in HF-fed itga2(-/-) mice. Nevertheless, muscle insulin action and vascularity were increased. Muscle IR in HF-fed itga1(-/-) mice was unchanged. Insulin sensitivity in chow-fed itga1(-/-) and itga2(-/-) mice was not different from wild-type littermates. CONCLUSIONS: ECM collagen expansion is tightly associated with muscle IR. Studies with itga2(-/-) mice provide mechanistic insight for this association by showing that the link between muscle IR and increased collagen can be uncoupled by the absence of collagen-integrin α(2)β(1) interaction

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)
    corecore