86 research outputs found

    Exact Analysis of Level-Crossing Statistics for (d+1)-Dimensional Fluctuating Surfaces

    Full text link
    We carry out an exact analysis of the average frequency ναxi+\nu_{\alpha x_i}^+ in the direction xix_i of positive-slope crossing of a given level α\alpha such that, h(x,t)hˉ=αh({\bf x},t)-\bar{h}=\alpha, of growing surfaces in spatial dimension dd. Here, h(x,t)h({\bf x},t) is the surface height at time tt, and hˉ\bar{h} is its mean value. We analyze the problem when the surface growth dynamics is governed by the Kardar-Parisi-Zhang (KPZ) equation without surface tension, in the time regime prior to appearance of cusp singularities (sharp valleys), as well as in the random deposition (RD) model. The total number N+N^+ of such level-crossings with positive slope in all the directions is then shown to scale with time as td/2t^{d/2} for both the KPZ equation and the RD model.Comment: 22 pages, 3 figure

    Medication wastage and its impact on environment: evidence from Malaysia

    Get PDF
    The purpose of this study is to investigate the critical factors that have impact on environment causes of unused medication. The current study is a descriptive cross-sectional audit involving with patients based on a structured questionnaire format with answer sets. The data is analyzed using partial least square method. The results revealed that excess supplied, expired medicine, changed treatment and side effects have a significant impact on unused medication. In addition, overall unused medication has a significant relationship with environmental effect. In contrast, although excess supplied and side effects have not significant impact on environmental effect, but expired medicine and changed treatment have a significant impact on environmental effect. This survey results suggested; there are few factors which increased the volume of leftover medicine and it has led to an enhanced international awareness of the potential detrimental effects on the environment. More exertion is necessary to raise awareness of people in general as an initial step in promoting behavioral change in connection to medication wastage

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Unveiling the genetic landscape: Exploring the SSR-based genetic architecture and amino acid dissection of Gossypium barbadense and G. darwinii genomes

    Get PDF
    Genetic maps highlight the genome organization and structure but also provide the chance of tagging superior traits for crop improvement through marker-assisted selection. Amino acids are building blocks of proteins and perform crucial function in regulating the signaling of molecules involved in the development and growth of plants. Plant architecture also have an impact on crop productivity. In order to select elite cultivars for breeding and identification of favorable alleles and their functional properties, a deep understanding of genetic architecture and development of genetic map is essential. In present investigation, an interspecific cross of Gossypium barbadense XH-18 × G. darwinii 5-7 was made to develop a genetic map utilizing single sequence repeat markers for the dissection of amino acids involved in genetic architecture of G. barbadense and G. darwinii. We measured chromosomal distribution of 20 amino acids across the whole genome of both species. The map consists of 613 markers spread across all 26 chromosomes, covering 2371.4 cM of cotton genome with an average inter-marker distance of 9.35 cM. The marker number anchored on the chromosomes varied from 5 to 76 with an average of 23.57 on each chromosome. The Dt sub-genome had more markers (83.03%) than the At sub-genome (15.66%). Moreover, the longest chromosome was 143.387 cM, the shortest was 58.430 cM, and the average length was 91.207 cM. The Dt subgenome spans a greater genomic distance than the At subgenome. A sum of 21,035 genes were discovered, covering the complete genome of G. barbadense; G. darwinii and have been found to be involved in tRNA 3'-trailer cleavage, macromolecule modification, peptide deformylase activity, response to biotic stimulus and defense response. The minimum Glutamic acid (Glu), Histidine (His), and Lysine (Lys) were found on Chr.13 (0.00-17.74), Chr.02 (0.00-8.01), and Chr.06 (0.00-17.97), respectively found through chromosomal amino acid dissection. The genome-wide SSR interspecific genetic map of G. barbadense and G. darwinii is first of its kind, and studying chromosomal distribution of amino acids will set a landmark step to dissect the genome structure of G. darwinii

    Functional genetic elements for controlling gene expression in Cupriavidus necator H16

    Get PDF
    A robust and predictable control of gene expression plays an important role in synthetic biology and biotechnology applications. Development and quantitative evaluation of functional genetic elements such as constitutive and inducible promoters, as well as ribosome binding sites (RBSs), are required. In this study, we design, build and test promoters and RBSs for controlling gene expression in the model lithoautotroph Cupriavidus necator H16. A series of variable-strength, insulated, constitutive promoters exhibiting predictable activity within more than 700-fold dynamic range is compared to the native PphaC, with the majority of promoters displaying up to a 9-fold higher activity. Positively (AraC/ParaBAD-L-arabinose and RhaRS/PrhaBAD-L-rhamnose) and negatively (AcuR/PacuRI-acrylate and CymR/Pcmt-cumate) regulated inducible systems are evaluated. By supplying different concentrations of inducers, over a 1000-fold range of gene expression levels is achieved. Application of inducible systems for controlling expression of isoprene synthase gene ispS leads to isoprene yields that exhibit a significant correlation to the reporter protein synthesis levels. The impact of designed RBSs and other genetic elements such as mRNA stem-loop structure and A/U- rich sequence on the gene expression is also evaluated. A second-order polynomial relationship is observed between the RBS activities and isoprene yields. This study presents quantitative data on regulatory genetic elements and expands the genetic toolbox of C. necator

    Analyzing the role of industrial sector's electricity consumption, prices, and GDP: A modified empirical evidence from Pakistan

    Get PDF
    Electricity usage plays a vital role in raising the massive growth in the economy; also, the industrial sector is the key factor of overall energy demand closely related to the economy. The study aims to contribute in two ways. First, the Vector Error Correction Model (VECM) estimates electricity consumption in Pakistan during 1970-2018 to find the relationship between electricity consumption, price, and real gross domestic product. Second, decomposing the overall impact of an unexpected shock on each variableos Dynamic Variance Decomposition Technique applied. The empirical analysis shows that the factors are co-integrated. The results also indicate the long-run relationship between electricity consumption, price, and real gross domestic product in the industrial sector. Further, the VECM analysis responses are also confirmed by the variance decomposition method. The findings confirm the potential of the industrial sector. We propose that formalized and proper assurance of electricity needs and demands at a reasonable price can boost the local industry's confidence and attract foreign investors. However, a strong governance structure should be extended to the public sector to ensure policies that priorities the distribution of energy to businesses for development

    Functional genetic elements for controlling gene expression in Cupriavidus necator H16

    Get PDF
    A robust and predictable control of gene expression plays an important role in synthetic biology and biotechnology applications. Development and quantitative evaluation of functional genetic elements such as constitutive and inducible promoters, as well as ribosome binding sites (RBSs), are required. In this study, we design, build and test promoters and RBSs for controlling gene expression in the model lithoautotroph Cupriavidus necator H16. A series of variable-strength, insulated, constitutive promoters exhibiting predictable activity within more than 700-fold dynamic range is compared to the native PphaC, with the majority of promoters displaying up to a 9-fold higher activity. Positively (AraC/ParaBAD-L-arabinose and RhaRS/PrhaBAD-L-rhamnose) and negatively (AcuR/PacuRI-acrylate and CymR/Pcmt-cumate) regulated inducible systems are evaluated. By supplying different concentrations of inducers, over a 1000-fold range of gene expression levels is achieved. Application of inducible systems for controlling expression of isoprene synthase gene ispS leads to isoprene yields that exhibit a significant correlation to the reporter protein synthesis levels. The impact of designed RBSs and other genetic elements such as mRNA stem-loop structure and A/U- rich sequence on the gene expression is also evaluated. A second-order polynomial relationship is observed between the RBS activities and isoprene yields. This study presents quantitative data on regulatory genetic elements and expands the genetic toolbox of C. necator

    Convergent synthesis of new N -substituted 2-{[5-(1H -indol-3-ylmethyl)-1,3,4-oxadiazol-2-yl]sulfanyl}acetamides as suitable therapeutic agents

    Get PDF
    abstract A series of N-substituted 2-{[5-(1H-indol-3-ylmethyl)-1,3,4-oxadiazol-2-yl]sulfanyl}acetamides (8a-w) was synthesized in three steps. The first step involved the sequential conversion of 2-(1H-indol-3-yl)acetic acid (1) to ester (2) followed by hydrazide (3) formation and finally cyclization in the presence of CS2 and alcoholic KOH yielded 5-(1H-indole-3-yl-methyl)-1,3,4-oxadiazole-2-thiol (4). In the second step, aryl/aralkyl amines (5a-w) were reacted with 2-bromoacetyl bromide (6) in basic medium to yield 2-bromo-N-substituted acetamides (7a-w). In the third step, these electrophiles (7a-w) were reacted with 4 to afford the target compounds (8a-w). Structural elucidation of all the synthesized derivatives was done by 1H-NMR, IR and EI-MS spectral techniques. Moreover, they were screened for antibacterial and hemolytic activity. Enzyme inhibition activity was well supported by molecular docking results, for example, compound 8q exhibited better inhibitory potential against α-glucosidase, while 8g and 8b exhibited comparatively better inhibition against butyrylcholinesterase and lipoxygenase, respectively. Similarly, compounds 8b and 8c showed very good antibacterial activity against Salmonella typhi, which was very close to that of ciprofloxacin, a standard antibiotic used in this study. 8c and 8l also showed very good antibacterial activity against Staphylococcus aureus as well. Almost all compounds showed very slight hemolytic activity, where 8p exhibited the least. Therefore, the molecules synthesized may have utility as suitable therapeutic agents

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √s = 13 TeV during 2016, 2017 and 2018. The biases are determined using Z → μ+μ- decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z → μ+μ- mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass
    corecore