58 research outputs found

    Medication wastage and its impact on environment: evidence from Malaysia

    Get PDF
    The purpose of this study is to investigate the critical factors that have impact on environment causes of unused medication. The current study is a descriptive cross-sectional audit involving with patients based on a structured questionnaire format with answer sets. The data is analyzed using partial least square method. The results revealed that excess supplied, expired medicine, changed treatment and side effects have a significant impact on unused medication. In addition, overall unused medication has a significant relationship with environmental effect. In contrast, although excess supplied and side effects have not significant impact on environmental effect, but expired medicine and changed treatment have a significant impact on environmental effect. This survey results suggested; there are few factors which increased the volume of leftover medicine and it has led to an enhanced international awareness of the potential detrimental effects on the environment. More exertion is necessary to raise awareness of people in general as an initial step in promoting behavioral change in connection to medication wastage

    Exact Analysis of Level-Crossing Statistics for (d+1)-Dimensional Fluctuating Surfaces

    Full text link
    We carry out an exact analysis of the average frequency ναxi+\nu_{\alpha x_i}^+ in the direction xix_i of positive-slope crossing of a given level α\alpha such that, h(x,t)hˉ=αh({\bf x},t)-\bar{h}=\alpha, of growing surfaces in spatial dimension dd. Here, h(x,t)h({\bf x},t) is the surface height at time tt, and hˉ\bar{h} is its mean value. We analyze the problem when the surface growth dynamics is governed by the Kardar-Parisi-Zhang (KPZ) equation without surface tension, in the time regime prior to appearance of cusp singularities (sharp valleys), as well as in the random deposition (RD) model. The total number N+N^+ of such level-crossings with positive slope in all the directions is then shown to scale with time as td/2t^{d/2} for both the KPZ equation and the RD model.Comment: 22 pages, 3 figure

    Functional genetic elements for controlling gene expression in Cupriavidus necator H16

    Get PDF
    A robust and predictable control of gene expression plays an important role in synthetic biology and biotechnology applications. Development and quantitative evaluation of functional genetic elements such as constitutive and inducible promoters, as well as ribosome binding sites (RBSs), are required. In this study, we design, build and test promoters and RBSs for controlling gene expression in the model lithoautotroph Cupriavidus necator H16. A series of variable-strength, insulated, constitutive promoters exhibiting predictable activity within more than 700-fold dynamic range is compared to the native PphaC, with the majority of promoters displaying up to a 9-fold higher activity. Positively (AraC/ParaBAD-L-arabinose and RhaRS/PrhaBAD-L-rhamnose) and negatively (AcuR/PacuRI-acrylate and CymR/Pcmt-cumate) regulated inducible systems are evaluated. By supplying different concentrations of inducers, over a 1000-fold range of gene expression levels is achieved. Application of inducible systems for controlling expression of isoprene synthase gene ispS leads to isoprene yields that exhibit a significant correlation to the reporter protein synthesis levels. The impact of designed RBSs and other genetic elements such as mRNA stem-loop structure and A/U- rich sequence on the gene expression is also evaluated. A second-order polynomial relationship is observed between the RBS activities and isoprene yields. This study presents quantitative data on regulatory genetic elements and expands the genetic toolbox of C. necator

    Analyzing the role of industrial sector's electricity consumption, prices, and GDP: A modified empirical evidence from Pakistan

    Get PDF
    Electricity usage plays a vital role in raising the massive growth in the economy; also, the industrial sector is the key factor of overall energy demand closely related to the economy. The study aims to contribute in two ways. First, the Vector Error Correction Model (VECM) estimates electricity consumption in Pakistan during 1970-2018 to find the relationship between electricity consumption, price, and real gross domestic product. Second, decomposing the overall impact of an unexpected shock on each variableos Dynamic Variance Decomposition Technique applied. The empirical analysis shows that the factors are co-integrated. The results also indicate the long-run relationship between electricity consumption, price, and real gross domestic product in the industrial sector. Further, the VECM analysis responses are also confirmed by the variance decomposition method. The findings confirm the potential of the industrial sector. We propose that formalized and proper assurance of electricity needs and demands at a reasonable price can boost the local industry's confidence and attract foreign investors. However, a strong governance structure should be extended to the public sector to ensure policies that priorities the distribution of energy to businesses for development

    Functional genetic elements for controlling gene expression in Cupriavidus necator H16

    Get PDF
    A robust and predictable control of gene expression plays an important role in synthetic biology and biotechnology applications. Development and quantitative evaluation of functional genetic elements such as constitutive and inducible promoters, as well as ribosome binding sites (RBSs), are required. In this study, we design, build and test promoters and RBSs for controlling gene expression in the model lithoautotroph Cupriavidus necator H16. A series of variable-strength, insulated, constitutive promoters exhibiting predictable activity within more than 700-fold dynamic range is compared to the native PphaC, with the majority of promoters displaying up to a 9-fold higher activity. Positively (AraC/ParaBAD-L-arabinose and RhaRS/PrhaBAD-L-rhamnose) and negatively (AcuR/PacuRI-acrylate and CymR/Pcmt-cumate) regulated inducible systems are evaluated. By supplying different concentrations of inducers, over a 1000-fold range of gene expression levels is achieved. Application of inducible systems for controlling expression of isoprene synthase gene ispS leads to isoprene yields that exhibit a significant correlation to the reporter protein synthesis levels. The impact of designed RBSs and other genetic elements such as mRNA stem-loop structure and A/U- rich sequence on the gene expression is also evaluated. A second-order polynomial relationship is observed between the RBS activities and isoprene yields. This study presents quantitative data on regulatory genetic elements and expands the genetic toolbox of C. necator

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation

    Get PDF
    Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the “nexus”. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice
    corecore