233 research outputs found

    Spectroscopic parameters and rest frequencies of isotopic methylidynium, CH+

    Full text link
    Astronomical observations toward Sagittarius B2(M) as well as other sources with APEX have recently suggested that the rest frequency of the J = 1 - 0 transitions of 13CH+ is too low by about 80 MHz. Improved rest frequencies of isotopologs of methylidynium should be derived to support analyses of spectral recording obtained with the ongoing Herschel mission or the upcoming SOFIA. Laboratory electronic spectra of four isotopologs of CH+ have been subjected to one global least-squares fit. Laboratory data for the J = 1 - 0 ground state rotational transitions of CH+, 13CH+, and CD+, which became available during the refereeing process, have been included in the fit as well. An accurate set of spectroscopic parameters has been obtained together with equilibrium bond lengths and accurate rest frequencies for six CH+ isotopologs: CH+, 13CH+, 13CD+, CD+, 14CH+, and CT+. The present data will be useful for the analyses of HerschelHerschel or SOFIA observations of methylidynium isotopic species.Comment: Astronomy and Astrophysics, accepted as Letter; 4 (here 5) page

    A terrestrial search for dark contents of the vacuum, such as dark energy, using atom interferometry

    Full text link
    We describe the theory and first experimental work on our concept for searching on earth for the presence of dark content of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong non-gravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO.The paper concludes with a projection that a future search of this nature might be carried out using an atom interferometer in an orbiting satellite. The apparatus is now being constructed

    Deep strong light-matter coupling in plasmonic nanoparticle crystals

    Get PDF
    In the regime of deep strong light–matter coupling, the coupling strength exceeds the transition energies of the material, fundamentally changing its properties; for example, the ground state of the system contains virtual photons and the internal electromagnetic field gets redistributed by photon self-interaction. So far, no electronic excitation of a material has shown such strong coupling to free-space photons. Here we show that three-dimensional crystals of plasmonic nanoparticles can realize deep strong coupling under ambient conditions, if the particles are ten times larger than the interparticle gaps. The experimental Rabi frequencies (1.9 to 3.3 electronvolts) of face-centred cubic crystals of gold nanoparticles with diameters between 25 and 60 nanometres exceed their plasmon energy by up to 180 per cent. We show that the continuum of photons and plasmons hybridizes into polaritons that violate the rotating-wave approximation. The coupling leads to a breakdown of the Purcell effect—the increase of radiative damping through light–matter coupling—and increases the radiative polariton lifetime. The results indicate that metallic and semiconducting nanoparticles can be used as building blocks for an entire class of materials with extreme light–matter interaction, which will find application in nonlinear optics, the search for cooperative effects and ground states, polariton chemistry and quantum technology

    Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia

    Get PDF
    Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40-60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association with dyslexia status in our sample. We observed statistically significant (p <2.8 x 10(-6)) enrichment of associations at the gene level, forLOC388780(20p13; uncharacterized gene), and forVEPH1(3q25), a gene implicated in brain development. We estimated an SNP-based heritability of 20-25% for DD, and observed significant associations of dyslexia risk with PGSs for attention deficit hyperactivity disorder (atp(T) = 0.05 in the training GWAS: OR = 1.23[1.16; 1.30] per standard deviation increase;p = 8 x 10(-13)), bipolar disorder (1.53[1.44; 1.63];p = 1 x 10(-43)), schizophrenia (1.36[1.28; 1.45];p = 4 x 10(-22)), psychiatric cross-disorder susceptibility (1.23[1.16; 1.30];p = 3 x 10(-12)), cortical thickness of the transverse temporal gyrus (0.90[0.86; 0.96];p = 5 x 10(-4)), educational attainment (0.86[0.82; 0.91];p = 2 x 10(-7)), and intelligence (0.72[0.68; 0.76];p = 9 x 10(-29)). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.Peer reviewe

    Bmp4 Is Essential for the Formation of the Vestibular Apparatus that Detects Angular Head Movements

    Get PDF
    Angular head movements in vertebrates are detected by the three semicircular canals of the inner ear and their associated sensory tissues, the cristae. Bone morphogenetic protein 4 (Bmp4), a member of the Transforming growth factor family (TGF-β), is conservatively expressed in the developing cristae in several species, including zebrafish, frog, chicken, and mouse. Using mouse models in which Bmp4 is conditionally deleted within the inner ear, as well as chicken models in which Bmp signaling is knocked down specifically in the cristae, we show that Bmp4 is essential for the formation of all three cristae and their associated canals. Our results indicate that Bmp4 does not mediate the formation of sensory hair and supporting cells within the cristae by directly regulating genes required for prosensory development in the inner ear such as Serrate1 (Jagged1 in mouse), Fgf10, and Sox2. Instead, Bmp4 most likely mediates crista formation by regulating Lmo4 and Msx1 in the sensory region and Gata3, p75Ngfr, and Lmo4 in the non-sensory region of the crista, the septum cruciatum. In the canals, Bmp2 and Dlx5 are regulated by Bmp4, either directly or indirectly. Mechanisms involved in the formation of sensory organs of the vertebrate inner ear are thought to be analogous to those regulating sensory bristle formation in Drosophila. Our results suggest that, in comparison to sensory bristles, crista formation within the inner ear requires an additional step of sensory and non-sensory fate specification

    Molecular Signatures of Prostate Stem Cells Reveal Novel Signaling Pathways and Provide Insights into Prostate Cancer

    Get PDF
    BACKGROUND:The global gene expression profiles of adult and fetal murine prostate stem cells were determined to define common and unique regulators whose misexpression might play a role in the development of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS:A distinctive core of transcriptional regulators common to both fetal and adult primitive prostate cells was identified as well as molecules that are exclusive to each population. Elements common to fetal and adult prostate stem cells include expression profiles of Wnt, Shh and other pathways identified in stem cells of other organs, signatures of the aryl-hydrocarbon receptor, and up-regulation of components of the aldehyde dehydrogenase/retinoic acid receptor axis. There is also a significant lipid metabolism signature, marked by overexpression of lipid metabolizing enzymes and the presence of the binding motif for Srebp1. The fetal stem cell population, characterized by more rapid proliferation and self-renewal, expresses regulators of the cell cycle, such as E2f, Nfy, Tead2 and Ap2, at elevated levels, while adult stem cells show a signature in which TGF-beta has a prominent role. Finally, comparison of the signatures of primitive prostate cells with previously described profiles of human prostate tumors identified stem cell molecules and pathways with deregulated expression in prostate tumors including chromatin modifiers and the oncogene, Erg. CONCLUSIONS/SIGNIFICANCE:Our data indicate that adult prostate stem or progenitor cells may acquire characteristics of self-renewing primitive fetal prostate cells during oncogenesis and suggest that aberrant activation of components of prostate stem cell pathways may contribute to the development of prostate tumors

    Inhibition of Neuroblastoma Tumor Growth by Targeted Delivery of MicroRNA-34a Using Anti-Disialoganglioside GD2 Coated Nanoparticles

    Get PDF
    Neuroblastoma is one of the most challenging malignancies of childhood, being associated with the highest death rate in paediatric oncology, underlining the need for novel therapeutic approaches. Typically, patients with high risk disease undergo an initial remission in response to treatment, followed by disease recurrence that has become refractory to further treatment. Here, we demonstrate the first silica nanoparticle-based targeted delivery of a tumor suppressive, pro-apoptotic microRNA, miR-34a, to neuroblastoma tumors in a murine orthotopic xenograft model. These tumors express high levels of the cell surface antigen disialoganglioside GD2 (GD(2)), providing a target for tumor-specific delivery.Nanoparticles encapsulating miR-34a and conjugated to a GD(2) antibody facilitated tumor-specific delivery following systemic administration into tumor bearing mice, resulted in significantly decreased tumor growth, increased apoptosis and a reduction in vascularisation. We further demonstrate a novel, multi-step molecular mechanism by which miR-34a leads to increased levels of the tissue inhibitor metallopeptidase 2 precursor (TIMP2) protein, accounting for the highly reduced vascularisation noted in miR-34a-treated tumors.These novel findings highlight the potential of anti-GD(2)-nanoparticle-mediated targeted delivery of miR-34a for both the treatment of GD(2)-expressing tumors, and as a basic discovery tool for elucidating biological effects of novel miRNAs on tumor growth
    corecore