502 research outputs found

    Information theoretical limits for quantum optimal control solutions: error scaling of noisy control channels

    Get PDF
    Accurate manipulations of an open quantum system require a deep knowledge of its controllability properties and the information content of the implemented control fields. By using tools of information and quantum optimal control theory, we provide analytical bounds (information-time bounds) to characterize our capability to control the system when subject to arbitrary sources of noise. Moreover, since the presence of an external noise field induces open quantum system dynamics, we also show that the results provided by the information-time bounds are in very good agreement with the Kofman–Kurizki universal formula describing decoherence processes. Finally, we numerically test the scaling of the control accuracy as a function of the noise parameters, by means of the dressed chopped random basis (dCRAB) algorithm for quantum optimal control

    A two-frequency acousto-optic modulator driver to improve the beam pointing stability during intensity ramps

    Get PDF
    We report on a scheme to improve the pointing stability of the first order beam diffracted by an acousto-optic modulator (AOM). Due to thermal effects inside the crystal, the angular position of the beam can change by as much as 1 mrad when the radio-frequency power in the AOM is reduced to decrease the first order beam intensity. This is done for example to perform forced evaporative cooling in ultracold atom experiments using far-off-resonant optical traps. We solve this problem by driving the AOM with two radio-frequencies f1f_1 and f2f_2. The power of f2f_2 is adjusted relative to the power of f1f_1 to keep the total power constant. Using this, the beam displacement is decreased by a factor of twenty. The method is simple to implement in existing experimental setups, without any modification of the optics

    A parametric model for the changes in the complex valued conductivity of a lung during tidal breathing

    Get PDF
    Classical homogenization theory based on the Hashin-Shtrikman coated ellipsoids is used to model the changes in the complex valued conductivity (or admittivity) of a lung during tidal breathing. Here, the lung is modeled as a two-phase composite material where the alveolar air-filling corresponds to the inclusion phase. The theory predicts a linear relationship between the real and the imaginary parts of the change in the complex valued conductivity of a lung during tidal breathing, and where the loss cotangent of the change is approximately the same as of the effective background conductivity and hence easy to estimate. The theory is illustrated with numerical examples, as well as by using reconstructed Electrical Impedance Tomography (EIT) images based on clinical data from an ongoing study within the EU-funded CRADL project. The theory may be potentially useful for improving the imaging algorithms and clinical evaluations in connection with lung EIT for respiratory management and monitoring in neonatal intensive care units

    Optimized breath detection algorithm in electrical impedance tomography

    Get PDF
    This paper defines a method for optimizing the breath delineation algorithms used in Electrical Impedance Tomography (EIT). In lung EIT the identification of the breath phases is central for generating tidal impedance variation images, subsequent data analysis and clinical evaluation. The optimisation of these algorithms is particularly important in neonatal care since the existing breath detectors developed for adults may give insufficient reliability in neonates due to their very irregular breathing pattern. Our approach is generic in the sense that it relies on the definition of a gold standard and the associated definition of detector sensitivity and specificity, an optimisation criterion and a set of detector parameters to be investigated. The gold standard has been defined by 11 clinicians with previous experience with EIT and the performance of our approach is described and validated using a neonatal EIT dataset acquired within the EU-funded CRADL project. Three different algorithms are proposed that are improving the breath detector performance by adding conditions on 1) maximum tidal breath rate obtained from zero-crossings of the EIT breathing signal, 2) minimum tidal impedance amplitude and 3) minimum tidal breath rate obtained from Time-Frequency (TF) analysis. As a baseline the zero crossing algorithm has been used with some default parameters based on the Swisstom EIT device. Based on the gold standard, the most crucial parameters of the proposed algorithms are optimised by using a simple exhaustive search and a weighted metric defined in connection with the Receiver Operating Characterics (ROC). This provides a practical way to achieve any desirable trade-off between the sensitivity and the specificity of the detectors. [Abstract copyright: © 2018 Institute of Physics and Engineering in Medicine.

    Observations of a ^3He-rich SEP Event over a Broad Range of Heliographic Longitudes: Results from STEREO and ACE

    Get PDF
    Observations of energetic ions and electrons from STEREO and ACE have been used to investigate the longitudinal extent of particle emissions from 3He ‐rich solar energetic particle (SEP) events. In the event of 3–4 Nov 2008, ions and electrons were detected 20° ahead and behind the nominal connection from the source region to 1 AU, and electrons were also detected 60° ahead. The results are consistent with those of earlier studies that correlated data from near‐Earth spacecraft with Helios data or with observations of source regions on the Sun

    Community Curation of Nomenclatural and Taxonomic Information in the Context of the Collection Management System JACQ

    Get PDF
    Nomenclatural and taxonomic information are crucial for curating botanical collections. In the course of changing methods for systematic and taxonomic studies, classification systems changed considerably over time (Dalla Torre and Harms 1900, Durand and Bentham 1888, Endlicher 1836, Angiosperm Phylogeny Group et al. 2016). Various approaches to store preserved material have been implemented, most of them based on scientific names (e.g., families, genera, species) often in combination with other criteria such as geographic provenance or collectors. The collection management system, JACQ, was established in the early 2000s then developed to support multiple institutions. It features a centralised data storage (with mirror sites) and access via the Internet. Participating collections can download their data at any time in a comma-separated values (CSV) format. From the beginning, JACQ was conceived as a collaboration platform for objects housed in botanical collections, i.e., plant, fungal and algal groups. For these groups, various sources of taxonomic reference exist, nowadays online resources are preferred, e.g., Catalogue of Life, AlgaeBase, Index Fungorum, Mycobank, Tropicos, Plants of the World Online, International Plant Names Index (IPNI), World Flora Online, Euro+Med, Anthos, Flora of Northamerica, REFLORA, Flora of China, Flora of Cuba, Australian Virtual Herbarium (AVH)

    Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at √s=7 TeV

    Get PDF
    Bose-Einstein correlations of same-sign charged pions, produced in protonproton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the form of an enhancement of pairs of like-sign charged pions with small four-momentum difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source is investigated, determining both the correlation radius and the chaoticity parameter. The measured correlation radius is found to increase as a function of increasing charged-particle multiplicity, while the chaoticity parameter is seen to decreas
    corecore