26 research outputs found

    Methanol: a diagnostic tool for high-mass star-forming regions

    Full text link
    We here present an innovative technique to handle the problem of deriving physical parameters from observed multi-line spectra of methanol, based on the simultaneous fit of all the lines with a synthetic spectrum computed under the Large Velocity Gradient approximation; the best physical parameters are found using numerical methods.Comment: 4 pages, 2 figures. (Co)authored by members of the MPIfR (Sub)millimeter Astronomy Group. To appear in the Proceedings of the 4th Cologne-Bonn-Zermatt-Symposium "The Dense Interstellar Medium in Galaxies" eds. S. Pfalzner, C. Kramer, C. Straubmeier, & A. Heithausen (Springer: Berlin

    Quantifying the Evolution and Impact of Antimalarial Drug Resistance: Drug Use, Spread of Resistance, and Drug Failure over a 12-Year Period in Papua New Guinea

    Get PDF
    Background. Antimalarial use is a key factor driving drug resistance and reduced treatment effectiveness in Plasmodium falciparum malaria, but there are few formal, quantitative analyses of this process. Methods. We analyzed drug usage, drug failure rates, and the frequencies of mutations and haplotypes known to be associated with drug resistance over a 12-year period (1991-2002) in a site in Papua New Guinea. This period included 2 successive treatment policies: amodiaquine (AQ) or chloroquine (CQ) from 1991 through 2000 and their subsequent replacement by sulfadoxine-pyrimethamine (SP) plus AQ or SP plus CQ. Results. Drug use approximated 1 treatment per person-year and was associated with increasing frequencies of pfcrt and pfmdr1 mutations and of treatment failure. The frequency of pfdhfr mutations also increased, especially after the change in treatment policy. Treatment failure rates multiplied by 3.5 between 1996 and 2000 but then decreased dramatically after treatment policy change. Conclusions. With high levels of resistance to CQ, AQ, and SP, the deployment of the combination of both drugs appears to increase clinical effectiveness but does not decelerate growth of resistance. Our estimates of mutation and haplotype frequencies provide estimates of selection coefficients acting in this environment, which are key parameters for understanding the dynamics of resistanc

    Walk on the Low Side: LOFAR explores the low-frequency radio emission of GASP jellyfish galaxies

    Get PDF
    Jellyfish galaxies, characterized by long filaments of stripped interstellar medium extending from their disks, are the prime laboratories to study the outcomes of ram pressure stripping. At radio wavelengths, they often show unilateral emission extending beyond the stellar disk, and an excess of radio luminosity with respect to that expected from their current star formation rate. We present new 144 MHz images provided by the LOFAR Two-metre Sky Survey for a sample of six galaxies from the GASP survey. These galaxies are characterized by a high global luminosity at 144 MHz (627×10226-27\times10^{22} W Hz1^{-1}), in excess compared to their ongoing star formation rate. The comparison of radio and Hα\alpha images smoothed with a Gaussian beam corresponding to \sim10 kpc reveals a sub-linear spatial correlation between the two emissions with an average slope k=0.50k=0.50. In their stellar disk we measure k=0.77k=0.77, which is close to the radio-to-star formation linear relation. We speculate that, as a consequence of the ram pressure, in these jellyfish galaxies the cosmic rays transport is more efficient than in normal galaxies. Radio tails typically have higher radio-to-Hα\alpha ratios than the disks, thus we suggest that the radio emission is boosted by the electrons stripped from the disks. In all galaxies, the star formation rate has decreased by a factor 10\leq10 within the last 108\sim10^8 yr. The observed radio emission is consistent with the past star formation, so we propose that this recent decline may be the cause of their radio luminosity-to-star formation rate excess.Comment: 22 pages, 7 figures. Accepted for publication on ApJ on 24/08/202

    Systematics of Hypocrea citrina and related taxa

    Get PDF
    Morphological studies and phylogenetic analyses of DNA sequences from three genomic regions – the internal transcribed spacer (ITS) regions of the nuclear ribosomal gene repeat, a partial sequence of RNA polymerase II subunit (rpb2), and a partial sequence of translation elongation factor (tef1) – were used to investigate the systematics of Hypocrea citrina and related species. A neotype specimen is designated for H. citrina that conforms to Persoon's description of a yellow effuse fungus occurring on leaf litter. Historical information and results obtained in this study provide the foundation for selection of a lectotype specimen from Fries's herbarium for H. lactea. The results indicate that (1) Hypocrea citrina and H. pulvinata are distinct species; (2) H. lactea sensu Fries is a synonym of the older name H. citrina; (3) H. pulvinata, H. protopulvinata, and H. americana are phylogenetically distinct species that form a well-supported polyporicolous clade; (4) H. citrina is situated in a clade closely related to H. pulvinata; and (5) H. microcitrina and H. pseudostraminea reside in a highly supported clade phylogenetically distinct from H. citrina. Hypocrea protopulvinata, H. microcitrina, H. megalocitrina, H. pseudostraminea, and a new species, H. aurantiistroma, are reported and described from North America. Variation in rpb2 and tef1 gene sequences suggests geographical subgroupings between European and North American isolates of H. pulvinata. The phylogenies inferred from ITS, rpb2, and tef1 gene sequences are concordant. Hypocrea citrina var. americana is elevated to species status, Hypocrea americana

    Molecular phylogenetics of Pleosporales: Melanommataceae and Lophiostomataceae re-circumscribed (Pleosporomycetidae, Dothideomycetes, Ascomycota)

    Get PDF
    The classification of Pleosporales has posed major challenges due to the lack of clear understanding of the importance of the morphological characters used to distinguish between different groups in the order. This has resulted in varied taxonomic treatments of many families in the group including Melanommataceae and Lophiostomataceae. In this study we employ two nuclear DNA gene markers, nuclear ribosomal large subunit DNA and translation elongation factor 1-alpha in order to examine the molecular phylogenetics of Pleosporales with strong emphasis on the families Melanommataceae and Lophiostomataceae. Phylogenetic analyses recovered Melanommataceae, Lophiostomataceae, Hypsostromataceae, and a few others as strongly supported clades within the Pleosporales. Melanommataceae as currently circumscribed was found to be polyphyletic. The genera Byssosphaeria, Melanomma, and Pseudotrichia were recovered within the family, while others such as Ostropella and Xenolophium nested outside in a weakly supported group along with Platystomum compressum and Pseudotrichia guatopoensis that may correspond to the family Platystomaceae. The genus Byssosphaeria was recovered as a strongly supported group within the Melanommataceae while Melanomma was weakly supported with unclear relationships among the species. The genera Herpotrichia and Bertiella were also found to belong in the Melanommataceae. Lophiostomataceae occurs as a strongly supported group but its concept is here expanded to include a new genus Misturatosphaeria that bears morphology traditionally not known to occur in the family. The strongly supported clade of Misturatosphaeria contains nine species that have gregarious, papillate ascomata with lighter coloured apices and plugged ostioles and that vary in ascospore morphology from 1- to 3-septate to muriform. Along with a strongly supported Lophiostoma clade, also within the family are Thyridaria macrostomoides based on new sequences from Kenyan collections and Massariosphaeria triseptata, M. grandispora, Westerdykella cylindrica and Preussia terricola based on GenBank sequences. The family Hypsostromataceae was recovered as a strongly supported monophyletic group nested within the Pleosporales

    A systematic account of the genus Plagiostoma (Gnomoniaceae, Diaporthales) based on morphology, host-associations, and a four-gene phylogeny

    Get PDF
    Members of the genus Plagiostoma inhabit leaves, stems, twigs, and branches of woody and herbaceous plants predominantly in the temperate Northern Hemisphere. An account of all known species of Plagiostoma including Cryptodiaporthe is presented based on analyses of morphological, cultural, and DNA sequence data. Multigene phylogenetic analyses of DNA sequences from four genes (β-tubulin, ITS, rpb2, and tef1-α) revealed eight previously undescribed phylogenetic species and an association between a clade composed of 11 species of Plagiostoma and the host family Salicaceae. In this paper these eight new species of Plagiostoma are described, four species are redescribed, and four new combinations are proposed. A key to the 25 accepted species of Plagiostoma based on host, shape, and size of perithecia, perithecial arrangement in the host, and microscopic characteristics of the asci and ascospores is provided. Disposition of additional names in Cryptodiaporthe and Plagiostoma is also discussed

    Perspective from a Younger Generation -- The Astro-Spectroscopy of Gisbert Winnewisser

    Full text link
    Gisbert Winnewisser's astronomical career was practically coextensive with the whole development of molecular radio astronomy. Here I would like to pick out a few of his many contributions, which I, personally, find particularly interesting and put them in the context of newer results.Comment: 14 pages. (Co)authored by members of the MPIfR (Sub)millimeter Astronomy Group. To appear in the Proceedings of the 4th Cologne-Bonn-Zermatt-Symposium "The Dense Interstellar Medium in Galaxies" eds. S. Pfalzner, C. Kramer, C. Straubmeier, & A. Heithausen (Springer: Berlin

    Mycosphaerella is polyphyletic

    Get PDF
    Mycosphaerella, one of the largest genera of ascomycetes, encompasses several thousand species and has anamorphs residing in more than 30 form genera. Although previous phylogenetic studies based on the ITS rDNA locus supported the monophyly of the genus, DNA sequence data derived from the LSU gene distinguish several clades and families in what has hitherto been considered to represent the Mycosphaerellaceae. Several important leaf spotting and extremotolerant species need to be disposed to the genus Teratosphaeria, for which a new family, the Teratosphaeriaceae, is introduced. Other distinct clades represent the Schizothyriaceae, Davidiellaceae, Capnodiaceae, and the Mycosphaerellaceae. Within the two major clades, namely Teratosphaeriaceae and Mycosphaerellaceae, most anamorph genera are polyphyletic, and new anamorph concepts need to be derived to cope with dual nomenclature within the Mycosphaerella complex

    Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales

    Get PDF
    The Gnomoniaceae are characterised by ascomata that are generally immersed, solitary, without a stroma, or aggregated with a rudimentary stroma, in herbaceous plant material especially in leaves, twigs or stems, but also in bark or wood. The ascomata are black, soft-textured, thin-walled, and pseudoparenchymatous with one or more central or eccentric necks. The asci usually have a distinct apical ring. The Gnomoniaceae includes species having ascospores that are small, mostly less than 25 μm long, although some are longer, and range in septation from non-septate to one-septate, rarely multi-septate. Molecular studies of the Gnomoniaceae suggest that the traditional classification of genera based on characteristics of the ascomata such as position of the neck and ascospores such as septation have resulted in genera that are not monophyletic. In this paper the concepts of the leaf-inhabiting genera in the Gnomoniaceae are reevaluated using multiple genes, specifically nrLSU, translation elongation factor 1-alpha (tef1-α), and RNA polymerase II second largest subunit (rpb2) for 64 isolates. ITS sequences were generated for 322 isolates. Six genera of leaf-inhabiting Gnomoniaceae are defined based on placement of their type species within the multigene phylogeny. The new monotypic genus Ambarignomonia is established for an unusual species, A. petiolorum. A key to 59 species of leaf-inhabiting Gnomoniaceae is presented and 22 species of Gnomoniaceae are described and illustrated
    corecore