40 research outputs found

    Tribute to Bob Yegge

    Get PDF

    Debtor-Creditor Remedies a New Proposal

    Get PDF

    Paper Session I-A - Starlab Overview

    Get PDF
    Stariab, a test bed designed to be flown on NASA\u27s Space Shuttle, will be used to conduct a series of acquisition, tracking, and pointing (ATP) experiments that are relevant to the Strategic Defense Initiative (SDI) Mission. In the primary experiment, Stariab will acquire, track, and precisely point a laser beam at an instrumented 4-stage booster rocket known as Starbird. Simultaneously, booster plume data will be collected at a variety of wavelengths and at resolutions never before achieved in space. Stariab will also be used to demonstrate advanced adaptive optics techniques using a booster plume source, rapid optical retargeting, and laser communications from space to below the ocean\u27s surface. In addition, Stariab will be used to collect data on earthspace backgrounds and on adaptive optics systems used to compensate for atmospheric turbulence

    Testing of an oral dosing technique for double-crested cormorants, \u3ci\u3ePhalacocorax auritus\u3c/i\u3e, laughing gulls, \u3ci\u3eLeucophaeus atricilla\u3c/i\u3e, homing pigeons, \u3ci\u3eColumba livia\u3c/i\u3e, and western sandpipers, \u3ci\u3eCalidris mauri\u3c/i\u3e, with artificially weather MC252 oil

    Get PDF
    Scoping studies were designed to determine if double-crested cormorants (Phalacocorax auritus), laughing gulls (Leucophaues atricilla), homing pigeons (Columba livia) and western sandpipers (Calidris mauri) that were gavaged with a mixture of artificially weathered MC252 oil and food for either a single day or 4–5 consecutive days showed signs of oil toxicity. Where volume allowed, samples were collected for hematology, plasma protein electrophoresis, clinical chemistry and electrolytes, oxidative stress and organ weigh changes. Double-crested cormorants, laughing gulls and western sandpipers all excreted oil within 30 min of dose, while pigeons regurgitated within less than one hour of dosing. There were species differences in the effectiveness of the dosing technique, with double-crested cormorants having the greatest number of responsive endpoints at the completion of the trial. Statistically significant changes in packed cell volume, white cell counts, alkaline phosphatase, alanine aminotransferase, creatine phosphokinase, gamma glutamyl transferase, uric acid, chloride, sodium, potassium, calcium, total glutathione, glutathione disulfide, reduced glutathione, spleen and liver weights were measured in double-crested cormorants. Homing pigeons had statistically significant changes in creatine phosphokinase, total glutathione, glutathione disulfide, reduced glutathione and Trolox equivalents. Laughing gulls exhibited statistically significant decreases in spleen and kidney weight, and no changes were observed in any measurement endpoints tested in western sandpipers

    Mucormycosis: an emerging disease?

    Get PDF
    ABSTRACTMucormycosis is the third invasive mycosis in order of importance after candidiasis and aspergillosis and is caused by fungi of the class Zygomycetes. The most important species in order of frequency is Rhizopus arrhizus (oryzae). Identification of the agents responsible for mucormycosis is based on macroscopic and microscopic morphological criteria, carbohydrate assimilation and the maximum temperature compatible with its growth. The incidence of mucormycosis is approximately 1.7 cases per 1000 000 inhabitants per year, and the main risk-factors for the development of mucormycosis are ketoacidosis (diabetic or other), iatrogenic immunosuppression, use of corticosteroids or deferoxamine, disruption of mucocutaneous barriers by catheters and other devices, and exposure to bandages contaminated by these fungi. Mucorales invade deep tissues via inhalation of airborne spores, percutaneous inoculation or ingestion. They colonise a high number of patients but do not cause invasion. Mucormycosis most commonly manifests in the sinuses (39%), lungs (24%), skin (19%), brain (9%), and gastrointestinal tract (7%), in the form of disseminated disease (6%), and in other sites (6%). Clinical diagnosis of mucormycosis is difficult, and is often made at a late stage of the disease or post-mortem. Confirmation of the clinical form requires the combination of symptoms compatible with histological invasion of tissues. The probable diagnosis of mucormycosis requires the combination of various clinical data and the isolation in culture of the fungus from clinical samples. Treatment of mucormycosis requires a rapid diagnosis, correction of predisposing factors, surgical resection, debridement and appropriate antifungal therapy. Liposomal amphotericin B is the therapy of choice for this condition. Itraconazole is considered to be inappropriate and there is evidence of its failure in patients suffering from mucormycosis. Voriconazole is not active in vitro against Mucorales, and failed when used in vivo. Posaconazole and ravuconazole have good activity in vitro. The overall rate of mortality of mucormycosis is approximately 40%

    Fourteenth Amendment Congressional Power to Legislate Against Private Discriminations the Guest Case

    No full text

    Debtor-Creditor Remedies a New Proposal

    No full text

    Regadenoson induces comparable left ventricular perfusion defects as adenosine: a quantitative analysis from the ADVANCE MPI 2 trial

    No full text
    This study sought to determine whether regadenoson induces left ventricular perfusion defects of similar size and severity as seen with adenosine stress. Total and ischemic left ventricular perfusion defect size predict patient outcome. Therefore, it is important to show that newer stressor agents induce similar perfusion abnormalities as observed with currently available ones. The ADVANCE MPI 2 (Adenosine versus Regadenoson Comparative Evaluation for Myocardial Perfusion Imaging) study was a prospective, double-blind, randomized trial comparing image results in patients undergoing standard gated adenosine single-photon emission computed tomography (SPECT) myocardial perfusion imaging who were then randomized in a 2:1 ratio to either regadenoson (N = 495) or a second adenosine SPECT (N = 260). Quantitative SPECT analysis was used to determine total left ventricular perfusion defect size and the extent of ischemia. Quantification was performed by a single observer who was blinded to randomization and image sequence. Baseline gated perfusion results were similar in patients randomized to adenosine or regadenoson. No significant differences in total (11.5 +/- 15.7 vs. 11.4 +/- 15.8, p = 0.88) or ischemic (4.8 +/- 9.2 vs. 4.6 +/- 8.9, p = 0.43) perfusion defect sizes were observed between the regadenoson and adenosine groups, respectively. Linear regression showed a close correlation between adenosine and regadenoson for total (r = 0.97, p < 0.001) and ischemic (r = 0.95, p < 0.001) left ventricular perfusion defects. Serial differences in total (-0.03 +/- 3.89 vs. -0.13 +/- 4.16, p = 0.73) and ischemic (0.15 +/- 4.08 vs. 0.25 +/- 3.81, p = 0.74) perfusion defect size and left ventricular ejection fraction (0.12 +/- 0.32 vs. 0.15 +/- 0.35, p = 0.27) from study 1 to study 2 were virtually identical in patients randomized to regadenoson versus adenosine, respectively. The good correlation between serial adenosine and regadenoson studies regarding total (0.41 +/- 5.43 vs. 0.21 +/- 5.23, p = 0.76) and ischemic (0.17 +/- 5.31 vs. 0.23 +/- 6.08, p = 0.94) perfusion defects persisted in the subgroup of 308 patients with an abnormal baseline SPECT. Applying quantitative analysis, regadenoson induces virtually identical scintigraphic results as adenosine regarding the size and severity of left ventricular perfusion defects and the extent of scintigraphic ischemia
    corecore