67 research outputs found

    Internal waves and short-scale distribution patterns of chlorophyll in the Strait of Gibraltar and Alboran Sea

    Get PDF
    A selection of ASAR images have been analyzed, together with instantaneous images of surface chlorophyll recorded with MERIS and MODIS, in order to study the relationship between the physical and biological processes associated with internal waves in the Strait of Gibraltar and Alborán Sea. The images show peak levels of chlorophyll at the coastal edges to the north and south of the Camarinal Sill (CS) during the generation of internal waves, and peak levels of chlorophyll associated with the wave fronts as they travel into the Alborán Sea. The images have been compared with in-situ data. The results seem to indicate that, during the generation of the internal waves, a suction process takes place by which coastal waters rich in chlorophyll are drawn towards the center of the channel and then accompany the internal waves as they move towards the Alborán Sea

    Submesoscale, tidally-induced biogeochemical patterns in the Strait of Gibraltar

    Get PDF
    Tidal forcing and its fortnightly variation are known to be one of the main regulating agents of physical and biogeochemical signatures in the Strait of Gibraltar and surrounding areas. Samples obtained during spring and neap tides in the region were analyzed to determine the influence of this tidal variation on the submesoscale distribution of water masses and biological elements. During spring tides, strong and intermittent mixing processes between Mediterranean and Atlantic waters occur in the vicinity of the Camarinal Sill together with an eastward advection of those mixed waters into the Alboran Sea. Furthermore, the intense suction of surface coastal waters into the main channel of the strait was detected as chlorophyll patches in the Alboran Sea during spring tides. In contrast, the most characteristic phenomenon during neap tides was the arrival of pulses of relatively nutrient-rich North Atlantic Central Waters to the surface regions of the Alboran Sea. In addition, traces of the suction of coastal waters were observed for the first time during neap tides. Therefore, our results show that submesoscale processes are crucial in the dynamics of the Strait of Gibraltar, and they must be considered for the correct description of the biogeochemical features of Alboran Sea, especially during an inactive period of the coastal upwelling

    Vitamin D binding protein genotype is associated with plasma 25OHD concentration in West African children

    Get PDF
    Vitamin D is well known for its role in promoting skeletal health. Vitamin D status is determined conventionally by circulating 25-dihydroxyvitamin D (25OHD) concentration. There is evidence indicating that circulating 25OHD concentration is affected by variation in Gc, the gene encoding the vitamin D binding protein (DBP). The composite genotype of two single nucleotide polymorphisms (rs7041 and rs4588) results in different DBP isotypes (Gc1f, Gc1s and Gc2). The protein configurational differences among DBP isotypes affect DBP substrate binding affinity. The aims of this study were to determine 1) Gc variant frequencies in a population from an isolated rural region of The Gambia, West Africa (n=3129) with year-round opportunity for cutaneous vitamin D synthesis and 2) the effects of Gc variants on 25OHD concentration (n=237) in a genetically representative sub-group of children (mean (SD) age: 11.9 (4.8) years). The distribution of Gc variants was Gc1f: 0.86, Gc1s: 0.11 and Gc2: 0.03. The mean (SD) concentration of 25OHD was 59.6 (12.9) nmol/L and was significantly higher in those homozygous for Gc1f compared to other Gc variants (60.7 (13.1) vs. 56.6 (12.1) nmol/L, P=0.03). Plasma 25OHD and 1,25(OH)2D concentration was significantly associated with parathyroid hormone in Gc1f-1f but not in the other Gc variants combined. This study demonstrates that different Gc variants are associated with different 25OHD concentrations in a rural Gambian population. Gc1f-1f, thought to have the highest affinity for 25OHD, had the highest 25OHD concentration compared with lower affinity Gc variants. The considerable difference in Gc1f frequency observed in Gambians compared with other non-West African populations and associated differences in plasma 25OHD concentration, may have implications for the way in which vitamin D status should be interpreted across different ancestral groups

    Resilience and sustainability in civil construction

    Get PDF
    Climate change imposes new and severe demands on civil construction sector. Constructive methods and design criteria must be improved in order for the buildings to withstand catastrophic events without disruption of their use. This article briefly discusses some aspects of civil construction resilience and presents the first results of an evaluation of climatic events in the State of Santa Catarina performed by the Construction Resilience Study Group of the Civil Engineering Department of the UFSC

    Evaluation of Geostationary Lightning Mapper (GLM) Navigation Performance with the INR Performance Assessment Toolset (IPATS)

    Get PDF
    The GOES-R flight project has developed the Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) to perform independent INR evaluations of the optical instruments on the GOES-R series spacecraft. In this presentation, we document the development of navigation (NAV) evaluation capabilities within IPATS for the Geostationary Lightning Mapper (GLM). We also discuss the post-processing quality filtering developed for GLM NAV, and present example results for several GLM background image datasets. Initial results suggest that GOES-16 GLM is compliant with navigation requirements

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Natural forcings on a transformed territory overshoot thresholds of primary productivity in the Guadalquivir estuary

    No full text
    A three year-long quasi continuum sampling dataset on the Guadalquivir estuary water quality was used to assess the role of light availability on its biological production. We found that inorganic nutrients within the estuary are very high while phytoplankton biomass remains low most of the time. A strong relationship between phytoplankton biomass and water turbidity was found indicating that, indeed, light availability is the major constraint of primary production in this system. Most of the time this limitation of primary production is not associated to enhanced turbidity connected to fresh water inputs. Instead, our data indicate that, independently of freshwater inputs, the photosynthesis is restricted by tidal forcings enhancing turbidity in an estuary that has been highly modified. Our results match with classical theories on the functioning of well-mixed, estuarine ecosystems as well as with recent modeling exercises. We also discuss the potential impacts of this particular characteristic of some estuarine systems for their management and regulatory control.JRC.D.2-Water and Marine Resource

    Standard-compliant Parallel SystemC simulation of Loosely-Timed Transaction Level Models

    Get PDF
    International audienceTo face the growing complexity of System-on-Chips (SoCs) and their tight time-to-market constraints, Virtual Prototyping (VP) tools based on SystemC/TLM must get faster while keeping accuracy. However, the Accellera SystemC reference implementation remains sequential and cannot leverage the multiple cores of modern workstations. In this paper, we present a new implementation of a parallel and standard-compliant SystemC kernel, reaching unprecedented performances. By coupling a parallel SystemC kernel and memory access monitoring, we are able to keep SystemC atomic thread evaluation while leveraging the available host cores. Evaluations show a×19 speed-up compared to the Accellera SystemC kernel using 33 host cores reaching speeds above 2000 Million simulated Instructions Per Second (MIPS)

    Standard-compliant parallel SystemC simulation of loosely-timed transaction level models: From baremetal to Linux-based applications support

    No full text
    International audienceTo face the growing complexity of System-on-Chips (SoCs) and their tight time-to-market constraints, Virtual Prototyping (VP) tools based on SystemC/TLM2.0 must get faster while maintaining accuracy. However, the ASI SystemC reference implementation remains sequential and cannot leverage the multiple cores of modern workstations. In this paper, we present SCale 2.0, a new implementation of a parallel and standard-compliant SystemC kernel, reaching unprecedented simulation speeds. By coupling a parallel SystemC kernel with shared resources access monitoring and process-level rollback, we can preserve SystemC atomic thread evaluation while leveraging the available host cores. We also generate process interaction traces that can be used to replay any simulation deterministically for debug purpose. Evaluation on baremetal applications shows ×15 speedup compared to the ASI SystemC kernel using 33 host cores reaching speeds above 2300 Million simulated Instructions Per Second (MIPS). Challenges related to parallel simulation of full software stack with modern operating systems are also addressed with speedup reaching ×13 during recording run and ×24 during the replay run
    corecore