265 research outputs found

    Visual Brand Identity of Food Products: A Customer’s Perspective

    Get PDF
    Purpose – The aim of this research is to explore the benefits of a customer based approach on food packaging design. A case study of a small production honey brand is used. Design/methodology/approach – For the design process, a survey that involved visual elements was conducted as an online questionnaire. The final size of the sample consists of 285 questionnaires. Findings – The research findings indicate that packaging is a great influencer for consumers and the synergy of consumers with companies can be a catalyst for the product design process resulting in package designs, which engage potential customers and drive sales. Originality/value – According to this research high potential lies in the area of a customer driven package design process and thus it should be further investigated

    A consensus epitope prediction approach identifies the breadth of murine T CD8+ -cell responses to vaccinia virus

    Get PDF
    The value of predictive algorithms for identifying CD8+ T (TCD8+)-cell epitopes has not been adequately tested experimentally. Here we demonstrate that conventional bioinformatic methods predict the vast majority of TCD8+-cell epitopes derived from vaccinia virus WR strain (VACV-WR) in the H-2b mouse model. This approach reveals the breadth of T-cell responses to vaccinia, a widely studied murine viral infection model, and may provide a tool for developing comprehensive antigenic maps of any complex pathogen

    Gapped sequence alignment using artificial neural networks: application to the MHC class I system

    Get PDF
    Motivation: Many biological processes are guided by receptor interactions with linear ligands of variable length. One such receptor is the MHC class I molecule. The length preferences vary depending on the MHC allele, but are generally limited to peptides of length 8–11 amino acids. On this relatively simple system, we developed a sequence alignment method based on artificial neural networks that allows insertions and deletions in the alignment. Results: We show that prediction methods based on alignments that include insertions and deletions have significantly higher performance than methods trained on peptides of single lengths. Also, we illustrate how the location of deletions can aid the interpretation of the modes of binding of the peptide-MHC, as in the case of long peptides bulging out of the MHC groove or protruding at either terminus. Finally, we demonstrate that the method can learn the length profile of different MHC molecules, and quantified the reduction of the experimental effort required to identify potential epitopes using our prediction algorithm. Availability and implementation: The NetMHC-4.0 method for the prediction of peptide-MHC class I binding affinity using gapped sequence alignment is publicly available at: http://www.cbs.dtu.dk/ services/NetMHC-4.0.Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentin

    Impact of distinct poxvirus infections on the specificities and functionalities of CD4+ T cell responses.

    Get PDF
    UNLABELLED: The factors that determine CD4+ T cell (TCD4+) specificities, functional capacity, and memory persistence in response to complex pathogens remain unclear. We explored these parameters in the C57BL/6 mouse through comparison of two highly related (\u3e92% homology) poxviruses: ectromelia virus (ECTV), a natural mouse pathogen, and vaccinia virus (VACV), a heterologous virus that nevertheless elicits potent immune responses. In addition to elucidating several previously unidentified major histocompatibility complex class II (MHC-II)-restricted epitopes, we observed many qualitative and quantitative differences between the TCD4+ repertoires, including responses not elicited by VACV despite complete sequence conservation. In addition, we observed functional heterogeneity between ECTV- and VACV-specific TCD4+ at both a global and individual epitope level, particularly greater expression of the cytolytic marker CD107a from TCD4+ following ECTV infection. Most striking were differences during the late memory phase where, in contrast to ECTV, VACV infection failed to elicit measurable epitope-specific TCD4+ as determined by intracellular cytokine staining. These findings illustrate the strong influence of epitope-extrinsic factors on TCD4+ responses and memory. IMPORTANCE: Much of our understanding concerning host-pathogen relationships in the context of poxvirus infections stems from studies of VACV in mice. However, VACV is not a natural mouse pathogen, and therefore, the relevance of results obtained using this model may be limited. Here, we explored the MHC class II-restricted TCD4+ repertoire induced by mousepox (ECTV) infection and the functional profile of the responding epitope-specific TCD4+, comparing these results to those induced by VACV infection under matched conditions. Despite a high degree of homology between the two viruses, we observed distinct specificity and functional profiles of TCD4+ responses at both acute and memory time points, with VACV-specific TCD4+ memory being notably compromised. These data offer insight into the impact of epitope-extrinsic factors on the resulting TCD4+ responses

    Immune epitope database analysis resource

    Get PDF
    The immune epitope database analysis resource (IEDB-AR: http://tools.iedb.org) is a collection of tools for prediction and analysis of molecular targets of T- and B-cell immune responses (i.e. epitopes). Since its last publication in the NAR webserver issue in 2008, a new generation of peptide:MHC binding and T-cell epitope predictive tools have been added. As validated by different labs and in the first international competition for predicting peptide:MHC-I binding, their predictive performances have improved considerably. In addition, a new B-cell epitope prediction tool was added, and the homology mapping tool was updated to enable mapping of discontinuous epitopes onto 3D structures. Furthermore, to serve a wider range of users, the number of ways in which IEDB-AR can be accessed has been expanded. Specifically, the predictive tools can be programmatically accessed using a web interface and can also be downloaded as software packages

    Whole-Genome Immunoinformatic Analysis of F. tularensis: Predicted CTL Epitopes Clustered in Hotspots Are Prone to Elicit a T-Cell Response

    Get PDF
    The cellular arm of the immune response plays a central role in the defense against intracellular pathogens, such as F. tularensis. To date, whole genome immunoinformatic analyses were limited either to relatively small genomes (e.g. viral) or to preselected subsets of proteins in complex pathogens. Here we present, for the first time, an unbiased bacterial global immunoinformatic screen of the 1740 proteins of F. tularensis subs. holarctica (LVS), aiming at identification of immunogenic peptides eliciting a CTL response. The very large number of predicted MHC class I binders (about 100,000, IC50 of 1000 nM or less) required the design of a strategy for further down selection of CTL candidates. The approach developed focused on mapping clusters rich in overlapping predicted epitopes, and ranking these “hotspot” regions according to the density of putative binding epitopes. Limited by the experimental load, we selected to screen a library of 1240 putative MHC binders derived from 104 top-ranking highly dense clusters. Peptides were tested for their ability to stimulate IFNγ secretion from splenocytes isolated from LVS vaccinated C57BL/6 mice. The majority of the clusters contained one or more CTL responder peptides and altogether 127 novel epitopes were identified, of which 82 are non-redundant. Accordingly, the level of success in identification of positive CTL responders was 17–25 fold higher than that found for a randomly selected library of 500 predicted MHC binders (IC50 of 500 nM or less). Most proteins (ca. 2/3) harboring the highly dense hotspots are membrane-associated. The approach for enrichment of true positive CTL epitopes described in this study, which allowed for over 50% increase in the dataset of known T-cell epitopes of F. tularensis, could be applied in immunoinformatic analyses of many other complex pathogen genomes

    Clusters versus Affinity-Based Approaches in F. tularensis Whole Genome Search of CTL Epitopes

    Get PDF
    Deciphering the cellular immunome of a bacterial pathogen is challenging due to the enormous number of putative peptidic determinants. State-of-the-art prediction methods developed in recent years enable to significantly reduce the number of peptides to be screened, yet the number of remaining candidates for experimental evaluation is still in the range of ten-thousands, even for a limited coverage of MHC alleles. We have recently established a resource-efficient approach for down selection of candidates and enrichment of true positives, based on selection of predicted MHC binders located in high density “hotspots" of putative epitopes. This cluster-based approach was applied to an unbiased, whole genome search of Francisella tularensis CTL epitopes and was shown to yield a 17–25 fold higher level of responders as compared to randomly selected predicted epitopes tested in Kb/Db C57BL/6 mice. In the present study, we further evaluate the cluster-based approach (down to a lower density range) and compare this approach to the classical affinity-based approach by testing putative CTL epitopes with predicted IC50 values of <10 nM. We demonstrate that while the percent of responders achieved by both approaches is similar, the profile of responders is different, and the predicted binding affinity of most responders in the cluster-based approach is relatively low (geometric mean of 170 nM), rendering the two approaches complimentary. The cluster-based approach is further validated in BALB/c F. tularensis immunized mice belonging to another allelic restriction (Kd/Dd) group. To date, the cluster-based approach yielded over 200 novel F. tularensis peptides eliciting a cellular response, all were verified as MHC class I binders, thereby substantially increasing the F. tularensis dataset of known CTL epitopes. The generality and power of the high density cluster-based approach suggest that it can be a valuable tool for identification of novel CTLs in proteomes of other bacterial pathogens

    The intimate relationship between human cytomegalovirus and the dendritic cell lineage.

    Get PDF
    Primary infection of healthy individuals with human cytomegalovirus (HCMV) is normally asymptomatic but results in the establishment of a lifelong infection of the host. One important cellular reservoir of HCMV latency is the CD34+ haematopoietic progenitor cells resident in the bone marrow. Viral gene expression is highly restricted in these cells with an absence of viral progeny production. However, cellular differentiation into mature myeloid cells is concomitant with the induction of a full lytic transcription program, DNA replication and, ultimately, the production of infectious viral progeny. Such reactivation of HCMV is a major cause of morbidity and mortality in a number of immune-suppressed patient populations. Our current understanding of HCMV carriage and reactivation is that cellular differentiation of the CD34+ progenitor cells through the myeloid lineage, resulting in terminal differentiation to either a macrophage or dendritic cell (DC) phenotype, is crucial for the reactivation event. In this mini-review, we focus on the interaction of HCMV with DCs, with a particular emphasis on their role in reactivation, and discuss how the critical regulation of viral major immediate-early gene expression appears to be delicately entwined with the activation of cellular pathways in differentiating DCs. Furthermore, we also explore the possible immune consequences associated with reactivation in a professional antigen presenting cell and potential countermeasures HCMV employs to abrogate these

    Design and utilization of epitope-based databases and predictive tools

    Get PDF
    In the last decade, significant progress has been made in expanding the scope and depth of publicly available immunological databases and online analysis resources, which have become an integral part of the repertoire of tools available to the scientific community for basic and applied research. Herein, we present a general overview of different resources and databases currently available. Because of our association with the Immune Epitope Database and Analysis Resource, this resource is reviewed in more detail. Our review includes aspects such as the development of formal ontologies and the type and breadth of analytical tools available to predict epitopes and analyze immune epitope data. A common feature of immunological databases is the requirement to host large amounts of data extracted from disparate sources. Accordingly, we discuss and review processes to curate the immunological literature, as well as examples of how the curated data can be used to generate a meta-analysis of the epitope knowledge currently available for diseases of worldwide concern, such as influenza and malaria. Finally, we review the impact of immunological databases, by analyzing their usage and citations, and by categorizing the type of citations. Taken together, the results highlight the growing impact and utility of immunological databases for the scientific community
    corecore