559 research outputs found
Contact process under renewals I
Motivated by questions regarding long range percolation, we investigate a
non-Markovian analogue of the Harris contact process in : an
individual is attached to each site , and it can be
infected or healthy; the infection propagates to healthy neighbors just as in
the usual contact process, according to independent exponential times with a
fixed rate ; nevertheless, the possible recovery times for an
individual are given by the points of a renewal process with heavy tail; the
renewal processes are assumed to be independent for different sites. We show
that the resulting processes have a critical value equal to zero.Comment: 13 page
Copy number variation burden does not predict severity of neurodevelopmental phenotype in children with a sex chromosome trisomy
Sex chromosome trisomies (SCTs) (XXX, XXY, and XYY karyotypes) are associated with an elevated risk of neurodevelopmental disorders. The range of severity of the phenotype is substantial. We considered whether this variable outcome was related to the presence of copy number variants (CNVs)âstretches of duplicated or deleted DNA. A sample of 125 children with an SCT were compared with 181 children of normal karyotype who had been given the same assessments. First, we compared the groups on measures of overall CNV burden: number of CNVs, total span of CNVs, and likely functional impact (probability of lossâofâfunction intolerance, pLI, summed over CNVs). Differences between groups were small relative to withinâgroup variance and not statistically significant on overall test. Next, we considered whether a measure of general neurodevelopmental impairment was predicted by pLI summed score, SCT versus comparison group, or the interaction between them. There was a substantial effect of SCT/comparison status but the pLI score was not predictive of outcomes in either group. We conclude that variable presence of CNVs is not a likely explanation for the wide phenotypic variation in children with SCTs. We discuss methodological challenges of testing whether CNVs are implicated in causing neurodevelopmental problems
Recommended from our members
Selenium Fractionation and Cycling in the Intertidal Zone of the Carquinez Strait Annual Report October 1, 1995-December 31, 1996
Does landscape-scale conservation management enhance the provision of ecosystem services?
Biodiversity conservation approaches are increasingly being implemented at the landscape-scale to support the maintenance
of metapopulations and metacommunities. However, the impact of such interventions on the provision of ecosystem services
is less well defined. Here we examine the potential impacts of landscape-scale conservation initiatives on ecosystem
services, through analysis of five case study areas in England and Wales. The provision of multiple ecosystem services was
projected according to current management plans and compared with a baseline scenario. Multicriteria analysis indicated
that in most cases landscape-scale approaches lead to an overall increase in service provision. Consistent increases were
projected in carbon storage, recreation and aesthetic value, as well as biodiversity value. However, most study areas
provided evidence of trade-offs, particularly between provisioning services and other types of service. Results differed
markedly between study areas, highlighting the importance of local context. These results suggest that landscape-scale
conservation approaches are likely to be effective in increasing ecosystem service provision, but also indicate that associated
costs can be significant, particularly in lowland areas
Is \gamma-ray emission from novae affected by interference effects in the 18F(p,\alpha)15O reaction?
The 18F(p,\alpha)15O reaction rate is crucial for constraining model
predictions of the \gamma-ray observable radioisotope 18F produced in novae.
The determination of this rate is challenging due to particular features of the
level scheme of the compound nucleus, 19Ne, which result in interference
effects potentially playing a significant role. The dominant uncertainty in
this rate arises from interference between J\pi=3/2+ states near the proton
threshold (Sp = 6.411 MeV) and a broad J\pi=3/2+ state at 665 keV above
threshold. This unknown interference term results in up to a factor of 40
uncertainty in the astrophysical S-factor at nova temperatures. Here we report
a new measurement of states in this energy region using the 19F(3He,t)19Ne
reaction. In stark contrast with previous assumptions we find at least 3
resonances between the proton threshold and Ecm=50 keV, all with different
angular distributions. None of these are consistent with J\pi= 3/2+ angular
distributions. We find that the main uncertainty now arises from the unknown
proton-width of the 48 keV resonance, not from possible interference effects.
Hydrodynamic nova model calculations performed indicate that this unknown width
affects 18F production by at least a factor of two in the model considered.Comment: 5 pages, 4 figures. Accepted for publication in Phys. Rev. Let
Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation
Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance
Inter-comparison of phytoplankton functional type phenology metrics derived from ocean color algorithms and Earth System Models
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordOcean color remote sensing of chlorophyll concentration has revolutionized our understanding of the biology of the oceans. However, a comprehensive understanding of the structure and function of oceanic ecosystems requires the characterization of the spatio-temporal variability of various phytoplankton functional types (PFTs), which have differing biogeochemical roles. Thus, recent bio-optical algorithm developments have focused on retrieval of various PFTs. It is important to validate and inter-compare the existing PFT algorithms; however direct comparison of retrieved variables is non-trivial because in those algorithms PFTs are defined differently. Thus, it is more plausible and potentially more informative to focus on emergent properties of PFTs, such as phenology. Furthermore, ocean color satellite PFT data sets can play a pivotal role in informing and/or validating the biogeochemical routines of Earth System Models. Here, the phenological characteristics of 10 PFT satellite algorithms and 7 latest-generation climate models from the Coupled Model Inter-comparison Project (CMIP5) are inter-compared as part of the International Satellite PFT Algorithm Inter-comparison Project. The comparison is based on monthly satellite data (mostly SeaWiFS) for the 2003â2007 period. The phenological analysis is based on the fraction of microplankton or a similar variable for the satellite algorithms and on the carbon biomass due to diatoms for the climate models. The seasonal cycle is estimated on a per-pixel basis as a sum of sinusoidal harmonics, derived from the Discrete Fourier Transform of the variable time series. Peak analysis is then applied to the estimated seasonal signal and the following phenological parameters are quantified for each satellite algorithm and climate model: seasonal amplitude, percent seasonal variance, month of maximum, and bloom duration. Secondary/double blooms occur in many areas and are also quantified. The algorithms and the models are quantitatively compared based on these emergent phenological parameters. Results indicate that while algorithms agree to a first order on a global scale, large differences among them exist; differences are analyzed in detail for two Longhurst regions in the North Atlantic: North Atlantic Drift Region (NADR) and North Atlantic Subtropical Gyre West (NASW). Seasonal cycles explain the most variance in zonal bands in the seasonally-stratified subtropics at about 30° latitude in the satellite PFT data. The CMIP5 models do not reproduce this pattern, exhibiting higher seasonality in mid and high-latitudes and generally much more spatially homogeneous patterns in phenological indices compared to satellite data. Satellite data indicate a complex structure of double blooms in the Equatorial region and mid-latitudes, and single blooms on the poleward edges of the subtropical gyres. In contrast, the CMIP5 models show single annual blooms over most of the ocean except for the Equatorial band and Arabian Sea.NASAEuropean Space Agency (ESA
A DNA nanoswitch incorporating the fluorescent base analogue 2-aminopurine detects single nucleotide mismatches in unlabelled targets
DNA nanoswitches can be designed to detect unlabelled nucleic acid targets and have been shown to discriminate between targets which differ in the identity of only one base. This paper demonstrates that the fluorescent base analogue 2-aminopurine (AP) can be used to discriminate between nanoswitches with and without targets and to discriminate between matched and mismatched targets. In particular, we have used both steady-state and time-resolved fluorescence spectroscopy to determine differences in AP environment at the branchpoint of nanoswitches assembled using complementary targets and targets which incorporate single base mismatches
Transcriptional dynamics of pluripotent stem cell-derived endothelial cell differentiation revealed by single-cell RNA sequencing
Aims Pluripotent stem cell-derived endothelial cell products possess therapeutic potential in ischaemic vascular disease. However, the factors that drive endothelial differentiation from pluripotency and cellular specification are largely unknown. The aims of this study were to use single-cell RNA sequencing (scRNA-seq) to map the transcriptional landscape and cellular dynamics of directed differentiation of human embryonic stem cell-derived endothelial cells (hESC-EC) and to compare these cells to mature endothelial cells from diverse vascular beds. Methods and results A highly efficient directed 8-day differentiation protocol was used to generate a hESC-derived endothelial cell product (hESC-ECP), in which 66% of cells co-expressed CD31 and CD144. We observed largely homogeneous hESC and mesodermal populations at Days 0 and 4, respectively, followed by a rapid emergence of distinct endothelial and mesenchymal populations. Pseudotime trajectory identified transcriptional signatures of endothelial commitment and maturation during the differentiation process. Concordance in transcriptional signatures was verified by scRNA-seq analysis using both a second hESC line RC11, and an alternative hESC-EC differentiation protocol. In total, 105 727 cells were subjected to scRNA-seq analysis. Global transcriptional comparison revealed a transcriptional architecture of hESC-EC that differs from freshly isolated and cultured human endothelial cells and from organ-specific endothelial cells. Conclusion A transcriptional bifurcation into endothelial and mesenchymal lineages was identified, as well as novel transcriptional signatures underpinning commitment and maturation. The transcriptional architecture of hESC-ECP was distinct from mature and foetal human EC.This work was supported by the Medical Research Council [MRC
Precision Medicine Doctoral Training Programme to I.R.M. and both the
MRC Discovery Award and Programme grant (MC_PC_15075) and
MRC Programme: Computational and Disease Genomics
(MC_UU_00007/15) to C.P.P.], the Wellcome Trust [Wellcome Trust
Senior Research Fellowship in Clinical Science (ref. 103749) to N.C.H.],
the European Research Council [Advanced Grant VASCMIR (RE7644) to
A.H.B.], and the British Heart Foundation [BHF CVR grant (RM/17/3/
33381) and BHF Chair of Translational Cardiovascular Sciences to
A.H.B.]
Observations of red-giant variable stars by Aboriginal Australians
Aboriginal Australians carefully observe the properties and positions of
stars, including both overt and subtle changes in their brightness, for
subsistence and social application. These observations are encoded in oral
tradition. I examine two Aboriginal oral traditions from South Australia that
describe the periodic changing brightness in three pulsating, red-giant
variable stars: Betelgeuse (Alpha Orionis), Aldebaran (Alpha Tauri), and
Antares (Alpha Scorpii). The Australian Aboriginal accounts stand as the only
known descriptions of pulsating variable stars in any Indigenous oral tradition
in the world. Researchers examining these oral traditions over the last
century, including anthropologists and astronomers, missed the description of
these stars as being variable in nature as the ethnographic record contained
several misidentifications of stars and celestial objects. Arguably,
ethnographers working on Indigenous Knowledge Systems should have academic
training in both the natural and social sciences.Comment: The Australian Journal of Anthropology (2018
- âŠ