72 research outputs found

    Diginyc partial hydatidiform mole with increased fetal nuchal translucency and ovarian hyperstimulation syndrome.

    Get PDF
    PURPOSE OF INVESTIGATION Hydatidiform mole (HM) is an abnormal pregnancy characterized by proliferation of cytotrophoblast and syncytiotrophoblast and vesicular swelling of placental villi. The fetus or embryo can be absent or abnormal. HMs can be complete or partial. CASE REPORT A case of diginyc partial HM at 12 weeks of gestational age was referred to the present center of prenatal diagnosis. The patient showed ovarian hyperstimulation syndrome. At ultrasonography, increased fetal nuchal translucency (NT) with fetal anomaly was evident, without sonographic signs of placental mole. Pregnancy was terminated with legal abortion. RESULTS Partial HM (PHM) was suspected by ultrasonographic fetal markers with ovarian hyperstimulation syndrome, but the diagnosis was performed only with fluorescent in situ hybridization. In particular fetal NT appeared increased also in diginyc mole. CONCLUSION In order to improve the detection rate of PHM, routine histological examinations may be associated to fluorescent in situ hybridization in all cases of fetal anomalies

    Autoimmunity in gestational diabetes mellitus in Sardinia: a preliminary case-control report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously reported a high prevalence (22.3%) of gestational diabetes mellitus (GDM) in a large group of Sardinian women, in contrast with the prevalence of Type 2 diabetes. Sardinia has an unusual distribution of haplotypes and genotypes, with the highest population frequency of HLA DR3 in the world, and after Finland, the highest prevalence of Type 1 diabetes and Autoimmune-related Diseases. In this study we preliminarily tested the prevalence of serological markers of Type 1 diabetes in a group of Sardinian GDM patients.</p> <p>Methods</p> <p>We determined glutamic decarboxylase antibodies (anti-GAD65), protein tyrosine phosphatase ICA 512 (IA2) antibodies (anti-IA2), and IAA in 62 GDM patients, and in 56 controls with matching age, gestational age and parity.</p> <p>Results</p> <p>We found a high prevalence and very unusual distribution of antibodies in GDM patients (38.8%), the anti-IA2 being the most frequent antibody. Out of all our GDM patients, 38.8% (24 of 62) were positive for at least one antibody. Anti-IA2 was present in 29.0 % (18 out of 62) vs. 7.1% (4 out of 56) in the controls (P < 0.001). IAA was present in 14.5% (9 out of 62) of our GDM patients, and absent in the control subjects (P < 0.001). Anti-GAD65 was also present in GDM patients, with a prevalence of 3.2% (2 out of 62) while it was absent in the control group (P = NS). Pre-gestational weight was significantly lower (57.78 ± 9.8 vs 65.9 ± 17.3 <it>P </it>= 0.04) in auto-antibodies- positive GDM patients.</p> <p>Conclusion</p> <p>These results are in contrast with the very low prevalence of all antibodies reported in Italy. If confirmed, they could indicate that a large proportion of GDM patients in Sardinia have an autoimmune origin, in accordance with the high prevalence of Type 1 diabetes.</p

    Insulin gene VNTR genotype associates with frequency and phenotype of the autoimmune response to proinsulin

    Get PDF
    Immune responses to autoantigens are in part controlled by deletion of autoreactive cells through genetically regulated selection mechanisms. We have directly analyzed peripheral CD4+ proinsulin (PI) 76–90 (SLQPLALEGSLQKRG)-specific T cells using soluble fluorescent major histocompatibility complex class II tetramers. Subjects with type I diabetes and healthy controls with high levels of peripheral proinsulin-specific T cells were characterized by the presence of a disease-susceptible polymorphism in the insulin variable number of tandem repeats (INS-VNTR) gene. Conversely, subjects with a ‘protective' polymorphism in the INS-VNTR gene had nearly undetectable levels of proinsulin tetramer-positive T cells. These results strongly imply a direct relationship between genetic control of autoantigen expression and peripheral autoreactivity, in which proinsulin genotype restricts the quantity and quality of the potential T-cell response. Using a modified tetramer to isolate low-avidity proinsulin-specific T cells from subjects with the susceptible genotype, transcript arrays identified several induced pro-apoptotic genes in the control, but not diabetic subjects, likely representing a second peripheral mechanism for maintenance of tolerance to self antigens

    Genetic loci linked to Type 1 Diabetes and Multiple Sclerosis families in Sardinia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Mediterranean island of Sardinia has a strikingly high incidence of the autoimmune disorders Type 1 Diabetes (T1D) and Multiple Sclerosis (MS). Furthermore, the two diseases tend to be co-inherited in the same individuals and in the same families. These observations suggest that some unknown autoimmunity variant with relevant effect size could be fairly common in this founder population and could be detected using linkage analysis.</p> <p>Methods</p> <p>To search for T1D and MS loci as well as any that predispose to both diseases, we performed a whole genome linkage scan, sequentially genotyping 593 microsatellite marker loci in 954 individuals distributed in 175 Sardinian families. In total, 413 patients were studied; 285 with T1D, 116 with MS and 12 with both disorders. Model-free linkage analysis was performed on the genotyped samples using the Kong and Cox logarithm of odds (LOD) score statistic.</p> <p>Results</p> <p>In T1D, aside from the HLA locus, we found four regions showing a lod-score ≥1; 1p31.1, 6q26, 10q21.2 and 22q11.22. In MS we found three regions showing a lod-score ≥1; 1q42.2, 18p11.21 and 20p12.3. In the combined T1D-MS scan for shared autoimmunity loci, four regions showed a LOD >1, including 6q26, 10q21.2, 20p12.3 and 22q11.22. When we typed more markers in these intervals we obtained suggestive evidence of linkage in the T1D scan at 10q21.2 (LOD = 2.1), in the MS scan at 1q42.2 (LOD = 2.5) and at 18p11.22 (LOD = 2.6). When all T1D and MS families were analysed jointly we obtained suggestive evidence in two regions: at 10q21.1 (LOD score = 2.3) and at 20p12.3 (LOD score = 2.5).</p> <p>Conclusion</p> <p>This suggestive evidence of linkage with T1D, MS and both diseases indicates critical chromosome intervals to be followed up in downstream association studies.</p

    Climate change impact and adaptation for wheat protein

    Get PDF
    Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32‐multi‐model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low‐rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2. Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by −1.1 percentage points, representing a relative change of −8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production
    corecore