589 research outputs found

    Cancer risk among users of neuroleptic medication: a population-based cohort study

    Get PDF
    It has been suggested that neuroleptic medication may decrease cancer risk. We compared cancer risks in a population-based cohort study of 25 264 users (⩾2 prescriptions) of neuroleptic medications in the county of North Jutland, Denmark, during 1989–2002, with that of county residents who did not receive such prescriptions. Statistical analyses were based on age-standardisation and Poisson regression analysis, adjusting for age, calendar period, COPD, liver cirrhosis or alcoholism, use of NSAID, and, for breast cancer, additionally for use of hormone therapy, age at first birth, and number of children. Use of neuroleptic medications was associated with a decreased risk for rectal cancer in both women and men (adjusted IRRs of 0.61 (95% confidence interval, 0.41–0.91) and 0.82 (0.56–1.19), respectively) and for colon cancer in female users (0.78; 0.62–0.98). Some risk reduction was seen for prostate cancer (0.87; 0.69–1.08), but breast cancer risk was close to unity (0.93; 0.74–1.17). Overall, treatment with neuroleptic medications was not related to a reduced risk of cancer, but for cancers of the rectum, colon and prostate there were suggestive decreases in risk

    Report of the ICES\NAFO Joint Working Group on Deep-water Ecology (WGDEC), 11–15 March 2013, Floedevigen, Norway.

    Get PDF
    On 11 February 2013, the joint ICES/NAFO WGDEC, chaired by Francis Neat (UK) and attended by ten members met at the Institute for Marine Research in Floedevi-gen, Norway to consider the terms of reference (ToR) listed in Section 2. WGDEC was requested to update all records of deep-water vulnerable marine eco-systems (VMEs) in the North Atlantic. New data from a range of sources including multibeam echosounder surveys, fisheries surveys, habitat modelling and seabed imagery surveys was provided. For several areas across the North Atlantic, WGDEC makes recommendations for areas to be closed to bottom fisheries for the purposes of conservation of VMEs

    Urbanization and traffic related exposures as risk factors for Schizophrenia

    Get PDF
    BACKGROUND: Urban birth or upbringing increase schizophrenia risk. Though unknown, the causes of these urban-rural differences have been hypothesized to include, e.g., infections, diet, toxic exposures, social class, or an artefact due to selective migration. METHODS: We investigated the hypothesis that traffic related exposures affect schizophrenia risk and that this potential effect is responsible for the urban-rural differences. The geographical distance from place of residence to nearest major road was used as a proxy variable for traffic related exposures. We used a large population-based sample of the Danish population (1.89 million people) including information on all permanent addresses linked with geographical information on all roads and house numbers in Denmark. Schizophrenia in cohort members (10,755 people) was identified by linkage with the Danish Psychiatric Central Register. RESULTS: The geographical distance from place of residence to nearest major road had a significant effect. The highest risk was found in children living 500–1000 metres from nearest major road (RR = 1.30 (95% Confidence Interval: 1.17–1.44). However, when we accounted for the degree of urbanization, the geographical distance to nearest major road had no significant effect. CONCLUSION: The cause(s) or exposure(s) responsible for the urban-rural differences in schizophrenia risk were closer related to the degree of urbanization than to the geographical distance to nearest major road. Traffic related exposures might thus be less likely explanations for the urban-rural differences in schizophrenia risk

    The characteristics of suicides within a week of discharge after psychiatric hospitalisation – a nationwide register study

    Get PDF
    BACKGROUND: The characteristics of victims of immediate post-discharge suicides are not well known. We explored these characteristics for the purposes of better recognition and preventive efforts of potential immediate post-discharge suicides. METHODS: Suicides from a Finnish nationwide register were linked with preceding periods of psychiatric inpatient treatment. Characteristics of suicides within a week of discharge were compared to those occurring later after discharge. RESULTS: Compared to other previously hospitalised suicide victims, those committing suicide within a week of discharge were more often female, unmarried, had a higher grade of education and a diagnosis of schizophrenia spectrum or affective disorder, tended to use more drowning and jumping from heights as the methods for suicide and had gained a smaller improvement in psychological functioning during hospitalization. CONCLUSION: These characteristics indicate a more severe psychopathology, relatively poorer level of functioning, less global response to hospitalisation, and a more frequent choice of lethal and easily available method for suicide. Potentially suicidal psychiatric patients should be better recognized and an immediate follow-up arranged if it is decided they be discharged

    Variable DNA methylation in neonates mediates the association between prenatal smoking and birth weight

    Get PDF
    There is great interest in the role epigenetic variation induced by non-genetic exposures may play in the context of health and disease. In particular, DNA methylation has previously been shown to be highly dynamic during the earliest stages of development and is influenced by in utero exposures such as maternal smoking and medication. In this study we sought to identify the specific DNA methylation differences in blood associated with prenatal and birth factors, including birth weight, gestational age and maternal smoking. We quantified neonatal methylomic variation in 1263 infants using DNA isolated from a unique collection of archived blood spots taken shortly after birth (mean = 6.08 days; s.d. = 3.24 days). An epigenome-wide association study (EWAS) of gestational age and birth weight identified 4299 and 18 differentially methylated positions (DMPs) respectively, at an experiment-wide significance threshold of p < 1 × 10-7. Our EWAS of maternal smoking during pregnancy identified 110 DMPs in neonatal blood, replicating previously reported genomic loci, including AHRR. Finally, we tested the hypothesis that DNA methylation mediates the relationship between maternal smoking and lower birth weight, finding evidence that methylomic variation at three DMPs may link exposure to outcome. These findings complement an expanding literature on the epigenomic consequences of prenatal exposures and obstetric factors, confirming a link between the maternal environment and gene regulation in neonates. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This study was supported by grant no. HD073978 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Environmental Health Sciences, and National Institute of Neurological Disorders and Stroke; and by the Beatrice and Samuel A. Seaver Foundation. The iPSYCH (The Lundbeck Foundation Initiative for Integrative Psychiatric Research) team acknowledges funding from The Lundbeck Foundation (grant no. R102-A9118 and R155-2014-1724), the Stanley Medical Research Institute, the European Research Council (project no: 294838), the Novo Nordisk Foundation for supporting the Danish National Biobank resource, and grants from Aarhus and Copenhagen Universities and University Hospitals, including support to the iSEQ Center, the GenomeDK HPC facility, and the CIRRAU Center. This research has been conducted using the Danish National Biobank resource, supported by the Novo Nordisk Foundation. J.M. and E.H. are supported by funding from the UK Medical Research Council (K013807).published version, accepted version, submitted versio

    Elevated polygenic burden for autism is associated with differential DNA methylation at birth

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder characterized by deficits in social communication and restricted, repetitive behaviors, interests, or activities. The etiology of ASD involves both inherited and environmental risk factors, with epigenetic processes hypothesized as one mechanism by which both genetic and non-genetic variation influence gene regulation and pathogenesis. The aim of this study was to identify DNA methylation biomarkers of ASD detectable at birth.This study was supported by grant HD073978 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Environmental Health Sciences, and National Institute of Neurological Disorders and Stroke; and by the Beatrice and Samuel A. Seaver Foundation. We acknowledge iPSYCH and The Lundbeck Foundation for providing samples and funding. The iPSYCH (The Lundbeck Foundation Initiative for Integrative Psychiatric Research) team acknowledges funding from The Lundbeck Foundation (grant numbers R102-A9118 and R155–2014-1724), the Stanley Medical Research Institute, the European Research Council (project number 294838), the Novo Nordisk Foundation for supporting the Danish National Biobank resource, and grants from Aarhus and Copenhagen Universities and University Hospitals, including support to the iSEQ Center, the GenomeDK HPC facility, and the CIRRAU Center. This research has been conducted using the Danish National Biobank resource, supported by the Novo Nordisk Foundation. JM is supported by funding from the UK Medical Research Council (MR/K013807/1) and a Distinguished Investigator Award from the Brain & Behavior Research Foundation. The SEED study was supported by Centers for Disease Control and Prevention (CDC) Cooperative Agreements announced under the RFAs 01086, 02199, DD11–002, DD06–003, DD04–001, and DD09–002 and the SEED DNA methylation measurements were supported by Autism Speaks Award #7659 to MDF. SA was supported by the Burroughs-Wellcome Trust training grant: Maryland, Genetics, Epidemiology and Medicine (MD-GEM). The SSC was supported by Simons Foundation (SFARI) award and NIH grant MH089606, both awarded to STW

    Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci.

    Get PDF
    Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10(-6)) and rs8057927 in CDH13 (P=1.39 × 10(-5)). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10(-7)). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10(-7)). This signal was replicated in the follow-up analysis (P=2.3 × 10(-2)). Significant interaction with maternal CMV infection was found for rs7902091 (P(SNP × CMV)=7.3 × 10(-7)) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies

    Spatial Scales of Bacterial Diversity in Cold-Water Coral Reef Ecosystems

    Get PDF
    Background: Cold-water coral reef ecosystems are recognized as biodiversity hotspots in the deep sea, but insights into their associated bacterial communities are still limited. Deciphering principle patterns of bacterial community variation over multiple spatial scales may however prove critical for a better understanding of factors contributing to cold-water coral reef stability and functioning. Methodology/Principal Findings: Bacterial community structure, as determined by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was investigated with respect to (i) microbial habitat type and (ii) coral species and color, as well as the three spatial components (iii) geomorphologic reef zoning, (iv) reef boundary, and (v) reef location. Communities revealed fundamental differences between coral-generated (branch surface, mucus) and ambient microbial habitats (seawater, sediments). This habitat specificity appeared pivotal for determining bacterial community shifts over all other study levels investigated. Coral-derived surfaces showed species-specific patterns, differing significantly between Lophelia pertusa and Madrepora oculata, but not between L. pertusa color types. Within the reef center, no community distinction corresponded to geomorphologic reef zoning for both coral-generated and ambient microbial habitats. Beyond the reef center, however, bacterial communities varied considerably from local to regional scales, with marked shifts toward the reef periphery as well as between different in- and offshore reef sites, suggesting significant biogeographic imprinting but wea

    A polygenic resilience score moderates the genetic risk for schizophrenia.

    Get PDF
    Based on the discovery by the Resilience Project (Chen R. et al. Nat Biotechnol 34:531–538, 2016) of rare variants that confer resistance to Mendelian disease, and protective alleles for some complex diseases, we posited the existence of genetic variants that promote resilience to highly heritable polygenic disorders1,0 such as schizophrenia. Resilience has been traditionally viewed as a psychological construct, although our use of the term resilience refers to a different construct that directly relates to the Resilience Project, namely: heritable variation that promotes resistance to disease by reducing the penetrance of risk loci, wherein resilience and risk loci operate orthogonal to one another. In this study, we established a procedure to identify unaffected individuals with relatively high polygenic risk for schizophrenia, and contrasted them with risk-matched schizophrenia cases to generate the first known “polygenic resilience score” that represents the additive contributions to SZ resistance by variants that are distinct from risk loci. The resilience score was derived from data compiled by the Psychiatric Genomics Consortium, and replicated in three independent samples. This work establishes a generalizable framework for finding resilience variants for any complex, heritable disorder
    corecore