760 research outputs found
Cyclotomic integers, fusion categories, and subfactors
Dimensions of objects in fusion categories are cyclotomic integers, hence
number theoretic results have implications in the study of fusion categories
and finite depth subfactors. We give two such applications. The first
application is determining a complete list of numbers in the interval (2,
76/33) which can occur as the Frobenius-Perron dimension of an object in a
fusion category. The smallest number on this list is realized in a new fusion
category which is constructed in the appendix written by V. Ostrik, while the
others are all realized by known examples. The second application proves that
in any family of graphs obtained by adding a 2-valent tree to a fixed graph,
either only finitely many graphs are principal graphs of subfactors or the
family consists of the A_n or D_n Dynkin diagrams. This result is effective,
and we apply it to several families arising in the classification of subfactors
of index less then 5.Comment: 47 pages, with an appendix by Victor Ostri
Half-BPS quotients in M-theory: ADE with a twist
We classify Freund-Rubin backgrounds of eleven-dimensional supergravity of
the form AdS_4 x X^7 which are at least half BPS; equivalently, smooth
quotients of the round 7-sphere by finite subgroups of SO(8) which admit an
(N>3)-dimensional subspace of Killing spinors. The classification is given in
terms of pairs consisting of an ADE subgroup of SU(2) and an automorphism
defining its embedding in SO(8). In particular we find novel half-BPS quotients
associated with the subgroups of type D_n (for n>5), E_7 and E_8 and their
outer automorphisms.Comment: 16 pages; V2: notational inconsistencies addressed, final version to
be published in JHE
Structure and dynamics of Rh surfaces
Lattice relaxations, surface phonon spectra, surface energies, and work
functions are calculated for Rh(100) and Rh(110) surfaces using
density-functional theory and the full-potential linearized augmented plane
wave method. Both, the local-density approximation and the generalized gradient
approximation to the exchange-correlation functional are considered. The force
constants are obtained from the directly calculated atomic forces, and the
temperature dependence of the surface relaxation is evaluated by minimizing the
free energy of the system. The anharmonicity of the atomic vibrations is taken
into account within the quasiharmonic approximation. The importance of
contributions from different phonons to the surface relaxation is analyzed.Comment: 9 pages, 7 figures, scheduled to appear in Phys. Rev. B, Feb. 15
(1998). Other related publications can be found at
http://www.rz-berlin.mpg.de/th/paper.htm
Systematic review of economic evaluations and cost analyses of guideline implementation strategies
Objectives To appraise the quality of economic studies undertaken as part of evaluations of guideline implementation strategies; determine their resources use; and recommend methods to improve future studies. Methods Systematic review of economic studies undertaken alongside robust study designs of clinical guideline implementation strategies published (1966-1998). Studies assessed against the BMJ economic evaluations guidelines for each stage of the guideline process (guideline development, implementation and treatment). Results 235 studies were identified, 63 reported some information on cost. Only 3 studies provided evidence that their guideline was effective and efficient. 38 reported the treatment costs only, 12 implementation and treatment costs, 11 implementation costs alone, and two guideline development, implementation and treatment costs. No study gave reasonably complete information on costs. Conclusions Very few satisfactory economic evaluations of guideline implementation strategies have been performed. Current evaluations have numerous methodological defects and rarely consider all relevant costs and benefits. Future evaluations should focus on evaluating the implementation of evidence based guidelines. Keywords: Cost-effectiveness analysis, physician (or health care professional) behaviour, practice guidelines, quality improvement, systematic review.Peer reviewedAuthor versio
Rare genetic variation in UNC13A may modify survival in amyotrophic lateral sclerosis
Our objective was to identify whether rare genetic variation in amyotrophic lateral sclerosis (ALS) candidate survival genes modifies ALS survival. Candidate genes were selected based on evidence for modifying ALS survival. Each tail of the extreme 1.5% of survival was selected from the UK MND DNA Bank and all samples available underwent whole genome sequencing. A replication set from the Netherlands was used for validation. Sequences of candidate survival genes were extracted and variants passing quality control with a minor allele frequency ≤0.05 were selected for association testing. Analysis was by burden testing using SKAT. Candidate survival genes UNC13A, KIFAP3, and EPHA4 were tested for association in a UK sample comprising 25 short survivors and 25 long survivors. Results showed that only SNVs in UNC13A were associated with survival (p = 6.57 × 10−3). SNV rs10419420:G > A was found exclusively in long survivors (3/25) and rs4808092:G > A exclusively in short survivors (4/25). These findings were not replicated in a Dutch sample. In conclusion, population specific rare variants of UNC13A may modulate survival in ALS
Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.
Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification
Deep analysis of CD4 T cells in the rhesus CNS during SIV infection
Virologic suppression with antiretroviral therapy (ART) has significantly improved health outcomes for people living with HIV, yet challenges related to chronic inflammation in the central nervous system (CNS)—known as Neuro-HIV- persist. As primary targets for HIV-1 with the ability to survey and populate the CNS and interact with myeloid cells to co-ordinate neuroinflammation, CD4 T cells are pivotal in Neuro-HIV. Despite their importance, our understanding of CD4 T cell distribution in virus-targeted CNS tissues, their response to infection, and potential recovery following initiation of ART remain limited. To address these gaps, we studied ten SIVmac251-infected rhesus macaques using an ART regimen simulating suboptimal adherence. We evaluated four macaques during the acute phase pre-ART and six during the chronic phase. Our data revealed that HIV target CCR5+ CD4 T cells inhabit both the brain parenchyma and adjacent CNS tissues, encompassing choroid plexus stroma, dura mater, and the skull bone marrow. Aligning with the known susceptibility of CCR5+ CD4 T cells to viral infection and their presence within the CNS, high levels of viral RNA were detected in the brain parenchyma and its border tissues during acute SIV infection. Single-cell RNA sequencing of CD45+ cells from the brain revealed colocalization of viral transcripts within CD4 clusters and significant activation of antiviral molecules and specific effector programs within T cells, indicating CNS CD4 T cell engagement during infection. Acute infection led to marked imbalance in the CNS CD4/CD8 ratio which persisted into the chronic phase. These observations underscore the functional involvement of CD4 T cells within the CNS during SIV infection, enhancing our understanding of their role in establishing CNS viral presence. Our findings offer insights for potential T cell-focused interventions while underscoring the challenges in eradicating HIV from the CNS, particularly in the context of sub-optimal ART
Nanoliter high throughput quantitative PCR
Understanding biological complexity arising from patterns of gene expression requires accurate and precise measurement of RNA levels across large numbers of genes simultaneously. Real time PCR (RT-PCR) in a microtiter plate is the preferred method for quantitative transcriptional analysis but scaling RT-PCR to higher throughputs in this fluidic format is intrinsically limited by cost and logistic considerations. Hybridization microarrays measure the transcription of many thousands of genes simultaneously yet are limited by low sensitivity, dynamic range, accuracy and sample throughput. The hybrid approach described here combines the superior accuracy, precision and dynamic range of RT-PCR with the parallelism of a microarray in an array of 3072 real time, 33 nl polymerase chain reactions (RT-PCRs) the size of a microscope slide. RT-PCR is demonstrated with an accuracy and precision equivalent to the same assay in a 384-well microplate but in a 64-fold smaller reaction volume, a 24-fold higher analytical throughput and a workflow compatible with standard microplate protocols
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
- …