6,352 research outputs found

    Plasma from Volunteers Breathing Helium Reduces Hypoxia-Induced Cell Damage in Human Endothelial Cells-Mechanisms of Remote Protection Against Hypoxia by Helium.

    Get PDF
    PurposeRemote ischemic preconditioning protects peripheral organs against prolonged ischemia/reperfusion injury via circulating protective factors. Preconditioning with helium protected healthy volunteers against postischemic endothelial dysfunction. We investigated whether plasma from helium-treated volunteers can protect human umbilical vein endothelial cells (HUVECs) against hypoxia in vitro through release of circulating of factors.MethodsHealthy male volunteers inhaled heliox (79% helium, 21% oxygen) or air for 30 min. Plasma was collected at baseline, directly after inhalation, 6 h and 24 h after start of the experiment. HUVECs were incubated with either 5% or 10% of the plasma for 1 or 2 h and subjected to enzymatically induced hypoxia. Cell damage was measured by LDH content. Furthermore, caveolin 1 (Cav-1), hypoxia-inducible factor (HIF1α), extracellular signal-regulated kinase (ERK)1/2, signal transducer and activator of transcription (STAT3) and endothelial nitric oxide synthase (eNOS) were determined.ResultsPrehypoxic exposure to 10% plasma obtained 6 h after helium inhalation decreased hypoxia-induced cell damage in HUVEC. Cav-1 knockdown in HUVEC abolished this effect.ConclusionsPlasma of healthy volunteers breathing helium protects HUVEC against hypoxic cell damage, possibly involving circulating Cav-1

    1D Bose Gases in an Optical Lattice

    Full text link
    We report on the study of the momentum distribution of a one-dimensional Bose gas in an optical lattice. From the momentum distribution we extract the condensed fraction of the gas and thereby measure the depletion of the condensate and compare it with a theorical estimate. We have measured the coherence length of the gas for systems with average occupation nˉ>1\bar{n}>1 and nˉ<1\bar{n}<1 per lattice site.Comment: 4 pages, 3 figure

    1D Bose gases in an optical lattice

    Get PDF
    We report on the study of the momentum distribution of a one-dimensional Bose gas in an optical lattice. From the momentum distribution we extract the condensed fraction of the gas and thereby measure the depletion of the condensate and compare it with a theoretical estimate. We have measured the coherence length of the gas for systems with average occupation n̄>1 and n̄<1 per lattice sit

    The structure ofAl(111)-K−(√3 × √3)R30° determined by LEED: stable and metastable adsorption sites

    Get PDF
    It is found that the adsorption of potassium on Al(111) at 90 K and at 300 K both result in a (√3 × √3)R0° structure. Through a detailed LEED analysis it is revealed that at 300 K the adatoms occupy substitutional sites and at 90 K the adatoms occupy on-top sites; both geometries have hitherto been considered as very unusual. The relationship between bond length and coordination is discussed with respect to the present results, and with respect to other quantitative studies of alkali-metal/metal adsorption systems

    Jahn-Teller stabilization of a "polar" metal oxide surface: Fe3O4(001)

    Get PDF
    Using ab initio thermodynamics we compile a phase diagram for the surface of Fe3O4(001) as a function of temperature and oxygen pressures. A hitherto ignored polar termination with octahedral iron and oxygen forming a wave-like structure along the [110]-direction is identified as the lowest energy configuration over a broad range of oxygen gas-phase conditions. This novel geometry is confirmed in a x-ray diffraction analysis. The stabilization of the Fe3O4(001)-surface goes together with dramatic changes in the electronic and magnetic properties, e.g., a halfmetal-to-metal transition.Comment: 4 pages, 4 figure

    Surface Geometry of C60 on Ag(111)

    Get PDF
    The geometry of adsorbed C60 influences its collective properties. We report the first dynamical low-energy electron diffraction study to determine the geometry of a C60 monolayer, Ag(111)-(23×23)30°-C60, and related density functional theory calculations. The stable monolayer has C60 molecules in vacancies that result from the displacement of surface atoms. C60 bonds with hexagons down, with their mirror planes parallel to that of the substrate. The results indicate that vacancy structures are the rule rather than the exception for C60 monolayers on close-packed metal surfaces. © 2009 The American Physical Society

    Realization of an Excited, Strongly-Correlated Quantum Gas Phase

    Full text link
    Ultracold atomic physics offers myriad possibilities to study strongly correlated many-body systems in lower dimensions. Typically, only ground state phases are accessible. Using a tunable quantum gas of bosonic cesium atoms, we realize and control in one dimensional geometry a highly excited quantum phase that is stabilized in the presence of attractive interactions by maintaining and strengthening quantum correlations across a confinement-induced resonance. We diagnose the crossover from repulsive to attractive interactions in terms of the stiffness and the energy of the system. Our results open up the experimental study of metastable excited many-body phases with strong correlations and their dynamical properties

    Quantitative Determination of Temperature in the Approach to Magnetic Order of Ultracold Fermions in an Optical Lattice

    Get PDF
    We perform a quantitative simulation of the repulsive Fermi-Hubbard model using an ultracold gas trapped in an optical lattice. The entropy of the system is determined by comparing accurate measurements of the equilibrium double occupancy with theoretical calculations over a wide range of parameters. We demonstrate the applicability of both high-temperature series and dynamical mean-field theory to obtain quantitative agreement with the experimental data. The reliability of the entropy determination is confirmed by a comprehensive analysis of all systematic errors. In the center of the Mott insulating cloud we obtain an entropy per atom as low as 0.77k(B) which is about twice as large as the entropy at the Neel transition. The corresponding temperature depends on the atom number and for small fillings reaches values on the order of the tunneling energy
    • 

    corecore