research

Realization of an Excited, Strongly-Correlated Quantum Gas Phase

Abstract

Ultracold atomic physics offers myriad possibilities to study strongly correlated many-body systems in lower dimensions. Typically, only ground state phases are accessible. Using a tunable quantum gas of bosonic cesium atoms, we realize and control in one dimensional geometry a highly excited quantum phase that is stabilized in the presence of attractive interactions by maintaining and strengthening quantum correlations across a confinement-induced resonance. We diagnose the crossover from repulsive to attractive interactions in terms of the stiffness and the energy of the system. Our results open up the experimental study of metastable excited many-body phases with strong correlations and their dynamical properties

    Similar works