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ABSTRACT We report on the study of the momentum distribu-
tion of a one-dimensional Bose gas in an optical lattice. From
the momentum distribution we extract the condensed fraction of
the gas and thereby measure the depletion of the condensate and
compare it with a theoretical estimate. We have measured the
coherence length of the gas for systems with average occupation
n > 1 and n < 1 per lattice site.
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1 The one-dimensional Bose gas in an optical lattice

A one-dimensional gas can be created in a trap
when the confining potential restricts the motion of the par-
ticles to one dimension with the transverse motional degrees
of freedom being frozen out. A cigar shaped harmonic trap-
ping geometry is characterized by the frequencies ω⊥ in the
two strongly confining axes and ωax in the weakly confining
axis. A kinematically one-dimensional situation is achieved
when all particles occupy only the ground state in the radial
directions, which implies that both the thermal energy kBT
and the interaction energy µ have to be much smaller than the
transverse energy level spacing. In general, one-dimensional
systems exhibit increased quantum fluctuations of the phase,
such that for a homogeneous 1D gas Bose–Einstein con-
densation is prevented. For trapped low-dimensional gases
the cross-over to a Bose–Einstein condensate takes place at
a finite temperature kBT1D = Nhωax/ ln(2N), where N is the
number of particles in the 1D system [1, 2]. The fluctuating
phase alters the properties of the gas [3–7]. One-dimensional
quantum systems exhibit a wealth of fascinating phenomena
whose explanations go beyond the mean-field description [8].

One-dimensional trapped Bose–Einstein condensates
were recently created and studied [9] using an optical lattice
consisting of two mutually perpendicular standing wave laser
fields. In this geometry the optical lattice forms an array of
one-dimensional tubes, each filled with a Bose–Einstein con-
densate. This experiment revealed the distinctively different
excitation spectrum of a one-dimensional quantum system as
compared to its three-dimensional counterpart [10]. In a pre-
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vious experiment a Bose condensates was loaded into a two-
dimensional optical lattices to study the coherence between
the tubes. In that experiment the tunnel-coupling between ad-
jacent tubes was larger than the axial oscillation frequency,
thereby an array of strongly coupled tubes was created [11].
Very recently the lifetime of one-dimensional gases created
in an optical lattice were studied [12]. In elongated magnetic
and optical traps a regime was accessed where a Bose con-
densate with µ ≤ hω⊥ coexisted with a three-dimensional
thermal cloud [13, 14]. In similar elongated traps studies of
solitons [15] and of enhanced phase fluctuations have been
performed [16, 17].

When the one-dimensional Bose gas is exposed to an ad-
ditional optical lattice potential in axial direction the bosons
may become localized in the minima of a periodic potential
and the system can then be described by the Bose–Hubbard
Hamiltonian [18, 19]:

H = − J̃
∑
〈i, j〉

â†j âi +
∑

i

εini + U

2

∑
i

ni(ni −1) . (1)

J̃ denotes the hopping matrix element between neighboring
lattice sites and determines the rate of which a particle dis-
appears from lattice site i and tunnels to the adjacent lattice
site j (âi and â†i are the annihilation and creation operators for
an atom at lattice site i, respectively). The total tunnel coup-
ling is J = z J̃ with z being the coordination number of the
lattice. The inhomogenity of the atom trap is characterized by
εi = m

2 (iωaxd)2 where m is the atomic mass and d the lattice
spacing. The occupation number of lattice site i is denoted
ni and U is the onsite-interaction energy between two bosons
on the same lattice site. The one-dimensional Bose–Hubbard
Hamiltonian exhibits a transition from a superfluid phase to
a Mott insulating phase for a ratio (U/J)c � 2 [3–6], which
we experimentally demonstrated recently [7]. Due to stronger
quantum fluctuations of the phase in a one-dimensional quan-
tum system this value is lower than the corresponding critical
value in three dimensions (U/J)c = 5.8 [18–20]. Tuning the
depth of the periodic potential changes the parameter U/J ,
which leads to increased effects of interparticle interactions
and small filling of the lattice sites may turn the system into
a gas of hardcore bosons [21, 22]. In the inhomogeneous sys-
tem Mott insulating regions with commensurate filling coexist
with superfluid regions with incommensurate filling and the
insulator is formed in a crossover type transition [4].
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2 Experimental setup

2.1 Bose condensates in an optical lattice

In the experiment, we collect up to 2 ×109 87Rb
atoms in a vapor cell magneto-optical trap. After polarization
gradientcoolingandopticalpumping into the |F = 2, mF = 2〉
hyperfine ground state the atoms are captured in a mag-
netic quadrupole trap. After magnetic transport of the trapped
atoms over a distance of 40 cm the magnetic trapping poten-
tial is converted into the harmonic and elongated potential of
a QUIC trap [23]. Subsequently, we perform radio frequency
induced evaporation of the cloud over a period of 25 s. After
evaporation we observe almost pure three-dimensional Bose–
Einstein condensates of up to 1.5(0.2)×105 atoms. Follow-
ing the condensation we adiabatically change the trapping
geometry to an approximately spherical symmetry with trap-
ping frequencies of ωx = 2π ×18 Hz, ωy = 2π ×20 Hz, and
ωz = 2π ×22 Hz. This reduces the peak density by a factor of
four and allows us to load the optical lattice more uniformly.

The optical lattice is formed by three retro-reflected laser
beams. Each beam is derived from a laser diode at a wave-
length of λ = 826 nm. At the position of the condensate the
beams are circularly focused to 1/e2-radii of 120 µm (x and
y axes) and 105 µm (z). The three beams possess mutually
orthogonal polarizations and their frequencies are offset with
respect to each other by several ten MHz. We stabilize the
lasers to a high-finesse Fabry–Pérot cavity, thereby reducing
their line width to ∼ 10 kHz. In order to load the condensate
into the ground state of the optical lattice, the intensities of
the lasers are slowly increased to their final values using an
exponential ramp with a time constant of 25 ms and a dura-
tion of 100 ms. The resulting optical potential depths Vx,y,z

are proportional to the laser intensities and are conveniently
expressed in terms of the recoil energy ER = h2k2

2m with k = 2π
λ

.

2.2 Preparation of one-dimensional quantum gases

Using the optical lattice we realize one-dimensional
quantum gases ordered in an array of one-dimensional tubes.
Two lattice axes are ramped to a fixed value V⊥ ≡ Vx = Vz =
30 ER. In this configuration the transverse tunnelling rates Jx

and Jz are small compared to the duration of the experiment.
We therefore neglect tunnelling between neighboring tubes
and assume an array of isolated 1D gases. An additional opti-
cal lattice is applied along the symmetry axis with a potential
depth Vax ≡ Vy � V⊥. The potential depth Vax controls the
value of U/J .

3 Results

3.1 Momentum distribution

We have studied the momentum distribution of the
gas by imaging the expanding atom cloud after being released
from the optical lattice. Prior to switching off the lattice the
laser intensity of the axial lattice is increased to � 25 ER for
40 µs. Then all laser beams are extinguished simultaneously
within 5 µs and the magnetic trapping potential is switched off
within 300 µs. This procedure may be regarded as a projection
of the wave function of the atoms onto the Bloch momen-
tum states for a lattice depth of 25 ER. This method offers

the advantage of controlling adiabatic processes during the
switch-off of the lattice. These might affect the momentum
distribution of the released atoms [22].

For our one-dimensional gases the collisional interaction
during expansion – which would give rise to a Thomas–Fermi
type envelope of the density distribution in the y-direction –
is small. This is related to the extremely fast radial expan-
sion of the clouds, which are initially confined to the harmonic
oscillator ground state a⊥ = √

h/(mω⊥) with a trapping fre-
quency of ω⊥ = 2π × 33 kHz. The peak density decreases
proportional to 1/

√
1 + (ω⊥t)2 which is much faster than the

timescale for axial expansion that is given by the axial trap-
ping frequency of ωax = 2π ×80 Hz. This axial confinement
is introduced by the gaussian waist of the laser beams forming
the array of one-dimensional tubes.

We have studied the resulting momentum distribution
after 15 ms of free expansion of the cloud. The atoms were
imaged by resonant absorption imaging and we determine the
optical density in the center of the cloud by averaging over
a 62 µm wide section in the image. Figure 1 shows the meas-
ured momentum distribution for a sample with an average
filling of n̄ = 1.2 atoms per lattice site. We calculate the aver-
age filling from the mean density of atoms which is derived
known atom number and the measured trapping frequencies
and includes a modified coupling strength due to the localiza-
tion of the atoms in the optical lattice potential [26]. The atom
number distribution at a given lattice site in the superfluid
phase can be approximated by a Poisson distribution. There-
fore, even with an average occupation number of n̄ = 0.6 the
probability of finding doubly or multiply occupied lattice sites
is on the order of 10%.

3.2 Quantum depletion of the condensate

When the potential depth of the lattice is raised the
strength of the atom-atom interaction increases. This is ac-
companied by quantum depletion of the condensate [24]. The

FIGURE 1 Measured momentum distribution for N = 1.5×105 atoms for
different depths of the axial lattice potential. Top to bottom on the left hand
site: Vax = 5, Vax = 7, Vax = 9, Vax = 12, Vax = 18 (in units of ER). The in-
set shows an absorption image after 10 ms time of flight where the area of
averaging is indicated
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FIGURE 2 Coherent fraction of the 1D Bose gas as measured from the
time-of-flight image. One-dimensional system with n̄ = 1.2 (solid squares),
one-dimensional system with n̄ = 0.6 (open squares), three-dimensional gas
with n̄ = 1 (triangles). Part of the experimental data are taken from [7]. The
solid line shows the calculated quantum depletion according to (2) using
Nw = 40

reduced condensate fraction of the system diminishes the con-
trast in the matter wave interference pattern after the atoms
have been released from the optical lattice. To extract the num-
ber of coherent atoms Ncoh from the interference pattern, the
interference peaks at 0hk, ±2hk and ±4hk are fitted by gaus-
sians. Incoherent atoms, both due to localization of the atoms
in the lattice or due to depletion of the condensate, give rise to
a broad gaussian background centered at zero quasi momen-
tum which dominates for higher Vax [25]. Taking this fit as
a measure of the number of incoherent atoms Nincoh, we cal-
culate the coherent fraction fc = Ncoh

Ncoh+Nincoh
[7]. The measured

data are shown in Fig. 2. For the one-dimensional Bose gas in
an optical lattice the quantum depletion is calculated by [26]

n

n0
=

√
1

2π2

m

m∗
1

a1Dn1D
ln

(
4Nw

π

)
. (2)

Here m is the atomic mass, m∗ is the effective mass in the
lattice, n1D is the 1D density, a1D is the one-dimensional scat-
tering length [27] and Nw is the number of potential wells
occupied by atoms. This expression holds in the tight binding
regime but for small depletion. Figure 2 displays the measured
coherent fraction together with the calculated values for the
quantum depletion, which show good agreement in the range
of validity of (2).

3.3 Coherence length

From the width of the central coherent momen-
tum component the coherence length of the gas in the optical
lattice can be inferred. A Bose–Einstein condensate exhibits
a long coherence length which leads to a small width of the in-
terference peak. Due to the inhomogeneity of the trap the tran-
sition to the Mott insulator sets in at those positions, where the
local density becomes commensurable with the spacing of the
potential wells in the optical lattice. This process breaks up the
condensed cloud into smaller units and therefore reduces the
coherence length of the system. In Fig. 3 we show the change
of the coherence length as a function of the parameter U/J .
For the one-dimensional gas with an average occupancy of

FIGURE 3 Width of the central momentum peak as a measure of the
phase coherence length of the system. One-dimensional system with n̄ = 1.2
(solid squares), one-dimensional system with n̄ = 0.6 (open squares), three-
dimensional gas with n̄ = 1 (triangles). Part of the data is taken from [7]

n̄ = 1.2 we observe a kink in the coherence length at U/J � 2
which indicates the onset of the Mott insulating phase. For the
three-dimensional gas with n̄ = 1 we find the Mott insulator
transition at U/J � 6, in agreement with the mean field the-
ory. For very small one-dimensional systems with n̄ = 0.6 we
observe that the coherence length of the sample starts to in-
crease around U/J = 4. This is in qualitative agreement with
the theoretical prediction that the Mott-insulator transition oc-
curs for U/J � 2 only for a chemical potential corresponding
a density n̄ = 1 but at larger values for n̄ < 1 [3].

4 Conclusion

We have studied the momentum distribution of
one-dimensional Bose gases in an optical lattice for different
average occupation of the lattice sites. We find that the co-
herent fraction of atoms is independent of the atomic density
when we tune the interaction strength U/J from the superfluid
to the Mott-insulating regime. The change of the coherence
length appear to indicate that the system enters the Mott-
insulator for small atomic densities only for larger values of
U/J .
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