47 research outputs found

    Meteorological Conditions Associated with Lightning Ignited Fires and Long-Continuing-Current Lightning in Arizona, New Mexico and Florida

    Get PDF
    Lightning is the main precursor of wildfires in Arizona, New Mexico, and Florida during the fire season. Forecasting the occurrence of Lightning-Ignited Wildfires (LIW) is an essential tool to reduce their impacts on the environment and society. Long-Continuing-Current (LCC) lightning is proposed to be the main precursor of LIW. The long-lasting continuing current phase of LCC lightning is that which is more likely to ignite vegetation. We investigated the meteorological conditions and vegetation type associated with LIW and LCC lightning flashes in Arizona, New Mexico, and Florida. We analyzed LIW between 2009 and 2013 and LCC lightning between 1998 and 2014 and combined lightning and meteorological data from a reanalysis data set. According to our results, LIW tend to occur during dry thunderstorms with a high surface temperature and a high temperature gradient between the 700 hPa and the 450 hPa vertical levels for high-based clouds. In turn, we obtained a high lightning-ignition efficiency in coniferous forests, such as the ponderosa pine in Arizona and New Mexico and the slash pine in Florida. We found that the meteorological conditions that favor fire ignition and spread are more significant in Florida than in Arizona and New Mexico, while the meteorological conditions that favor the occurrence of LIW in Arizona and New Mexico are closely related with the meteorological conditions that favor high lightning activity. In turn, our results indicate high atmospheric instability during the occurrence of LIW. Our findings suggest that LCC (>18 ms) lightning tends to occur in thunderstorms with high relative humidity and ice content in the clouds, and with low temperature in the entire troposphere. Additionally, a weak updraft in the lower troposphere and a strong one in the upper troposphere favor the occurrence of LCC (>18 ms) lightning. We found that the meteorological conditions that favor the occurrence of LCC (>18 ms) lightning are not necessarily the preferential meteorological conditions for LIW

    On the role of continuing currents in lightning-induced fire ignition

    Get PDF
    Lightning flashes are an important source of wildfires worldwide, contributing to the emission of trace gases to the atmosphere. Based on experiments and field observation, continuing cur rents in lightning have since a long time been proposed to play a significant role in the ignition of wildfires. However, simultaneous detections of optical and radio signals from fire-igniting lightning confirming the role of continuing currents in igniting wildfires are rare. In this work, we first analyze the optical signal of the lightning-ignited wildfires reported by the Geostationary Lightning Mapper over the Contiguous United States (CONUS) during the summer of 2018, and we then analyze the optical and the Extremely Low Frequency signal of a confirmed fire-igniting lightning flash in the Swiss Alps. Despite data uncertainties, we found that the probability of ignition of a lightning flash with Continuing Current (CC) lasting more than 10 ms is higher than that of cloud-to-ground lightning in CONUS. Finally, we confirm the existence of a long continuing current (lasting about 400 ms) associated with a long-lasting optical signal (lasting between 2 and 4 s) of a video-recorded fire-igniting lightning flash

    MASTREE+: time-series of plant reproductive effort from six continents

    Get PDF
    Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics.Additional co-authors: Ciprian Palaghianu, Mario Pesendorfer, Akiko Satake, Eliane Schermer, Andrew J. Tanentzap, Peter A. Thomas, Davide Vecchio, Andreas P. Wion, Thomas Wohlgemuth, Tingting Xue, Marie-Claire Aravena Acuña, Marcelo Daniel Barrera, Jessica H. Barton, Stan Boutin, Emma R. Bush, Sergio Donoso Calderón, Felipe S. Carevic, Carolina Volkmer de Castilho, Juan Manuel Cellini, Colin A. Chapman, Hazel Chapman, Francesco Chianucci, Patricia da Costa, Luc Croisé, Andrea Cutini, Ben Dantzer, R. Justin DeRose, Jean-Thoussaint Dikangadissi, Edmond Dimoto, Fernanda Lopes da Fonseca, Leonardo Gallo, Georg Gratzer, David F. Greene, Martín A. Hadad, Alejandro Huertas Herrera, Jill F. Johnstone, Urs Kalbitzer, Władysław Kantorowicz, Christie A. Klimas, Jonathan G. A. Lageard, Jeffrey Lane, Katharina Lapin, Mateusz Ledwoń, Abigail C. Leeper, Maria Vanessa Lencinas, Ana Cláudia Lira-Guedes, Michael C. Lordon, Paula Marchelli, Shealyn Marino, Harald Schmidt Van Marle, Andrew G. McAdam, Ludovic R. W. Momont, Manuel Nicolas, Lúcia Helena de Oliveira Wadt, Parisa Panahi, Guillermo Martínez Pastur, Thomas Patterson, Pablo Luis Peri, Łukasz Piechnik, Mehdi Pourhashemi, Claudia Espinoza Quezada, Fidel A. Roig, Karen Peña Rojas, Yamina Micaela Rosas, Silvio Schueler, Barbara Seget, Rosina Soler, Michael A. Steele, Mónica Toro-Manríquez, Caroline E. G. Tutin, Tharcisse Ukizintambara, Biplang Yadok, John L. Willis, Anita Zolles, Magdalena Żywiec, Davide Ascol

    A global database on holdover time of lightning-ignited wildfires

    Get PDF
    Holdover fires are usually associated with lightning-ignited wildfires (LIWs), which can experience a smoldering phase or go undetected for several hours, days or even weeks before being reported. Since the existence and duration of the smoldering combustion in LIWs is usually unknown, holdover time is conventionally defined as the time between the lightning event that ignited the fire and the time the fire is detected. Therefore, all LIWs have an associated holdover time, which may range from a few minutes to several days. However, we lack a comprehensive understanding of holdover times. Here, we introduce a global database on holdover times of LIWs. We have collected holdover time data from 29 different studies across the world through a literature review and datasets assembled by authors of the original studies. The database is composed of three data files (censored data, non-censored data, ancillary data) and three metadata files (description of database variables, list of references, reproducible examples). Censored data are the core of the database and consist of different frequency distributions reporting the number or relative frequency of LIWs per interval of holdover time. In addition, ancillary data provide further information to understand the methods and contexts in which the data were generated in the original studies. The first version of the database contains 42 frequency distributions of holdover time built with data on more than 152 375 LIWs from 13 countries in five continents covering a time span from 1921 to 2020. This database is the first freely available, harmonized and ready-to-use global source of holdover time data, which may be used in different ways to investigate LIWs and model the holdover phenomenon. The complete database can be downloaded at https://doi.org/10.5281/zenodo.7352172 (Moris et al., 2022)

    MASTREE+: Time-series of plant reproductive effort from six continents.

    Get PDF
    Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore