717 research outputs found

    Sensitivity to social agency in autistic adults

    Get PDF
    The presence of other people, whether real or implied, can have a profound impact on our behaviour. However, it is argued that autistic individuals show decreased interest in social phenomena, which leads to an absence of these effects. In this study, the agency of a cue was manipulated such that the cue was either described as representing a computer program or the eye movements of another participant. Both neurotypical and autistic participants demonstrated a social facilitation effect and were significantly more accurate on a prediction task when they believed the cue represented another participant. This demonstrates that whilst autistic adults may show difficulties in interpreting social behaviour this does not necessarily arise from a lack of sensitivity to social agency

    The effect of social presence on mentalizing behavior

    Get PDF
    Our behavior is frequently influenced by those around us. However, the majority of social cognition research is conducted using socially isolated paradigms, without the presence of real people (i.e., without a “social presence”). The current study aimed to test the influence of social presence upon a measure of mentalizing behavior in adults. Study 1 used a first-order theory of mind task; and study 2 used a second-order theory of mind task. Both studies included two conditions: live, where the task protagonists were physically present acting out the task, or recorded, where the same task protagonists demonstrated the task in a video recording. In both experiments, participants were affected by the social presence and demonstrated significantly different patterns of behavior in response to the presence of real people. This study, therefore, highlights the critical importance of understanding the effect of a social presence in mentalizing research, and suggests that the inclusion of a social presence needs to be given strong consideration across social cognition paradigms

    Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert atmospheric observatory

    Get PDF
    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a reference cylinder

    Elastic moduli of model random three-dimensional closed-cell cellular solids

    Full text link
    Most cellular solids are random materials, while practically all theoretical results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (ρ\rho) and microstructure dependence of the Young's modulus (EE) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law EρnE\propto\rho^n (1<n<21 < n <2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data.Comment: 13 pages, 13 figure

    The effect of dietary calcium inclusion on broiler gastrointestinal pH: quantification and method optimization

    Get PDF
    There is little consensus as to the most appropriate methodology for the measurement of gastrointestinal pH in chickens. An experiment was conducted to establish the optimum sampling method for the determination of broiler digesta pH in birds fed differing levels of dietary calcium. Ross 308 broilers (n = 60) were fed one of two experimental diets, one containing 0.8% monocalcium phosphate and 2% limestone and one containing 0.4% monocalcium phosphate and 1% limestone. Four factors were investigated to determine the most appropriate method of measuring broiler gastrointestinal digesta pH: removal from the tract, prolonged air exposure, altering the temperature of the assay, and controlling the water content of the digesta. The conditions were assessed at bird ages from 7 to 42 d post hatch. Dietary Ca content had no significant effect on in situ pH, but it contributed towards variance in ex situ pH of both gizzard and duodenum digesta

    Temperature dependence and mechanisms for vortex pinning by periodic arrays of Ni dots in Nb films

    Full text link
    Pinning interactions between superconducting vortices in Nb and magnetic Ni dots were studied as a function of current and temperature to clarify the nature of pinning mechanisms. A strong current dependence is found for a square array of dots, with a temperature dependent optimum current for the observation of periodic pinning, that decreases with temperature as (1-T/Tc)3/2. This same temperature dependence is found for the critical current at the first matching field with a rectangular array of dots. The analysis of these results allows to narrow the possible pinning mechanisms to a combination of two: the interaction between the vortex and the magnetic moment of the dot and the proximity effect. Moreover, for the rectangular dot array, the temperature dependence of the crossover between the low field regime with a rectangular vortex lattice to the high field regime with a square configuration has been studied. It is found that the crossover field increases with decreasing temperature. This dependence indicates a change in the balance between elastic and pinning energies, associated with dynamical effects of the vortex lattice in the high field range.Comment: 12 text pages (revtex), 6 figures (1st jpeg, 2nd-6th postscript) accepted in Physical Review

    Stationary solutions of the one-dimensional nonlinear Schroedinger equation: I. Case of repulsive nonlinearity

    Full text link
    All stationary solutions to the one-dimensional nonlinear Schroedinger equation under box and periodic boundary conditions are presented in analytic form. We consider the case of repulsive nonlinearity; in a companion paper we treat the attractive case. Our solutions take the form of stationary trains of dark or grey density-notch solitons. Real stationary states are in one-to-one correspondence with those of the linear Schr\"odinger equation. Complex stationary states are uniquely nonlinear, nodeless, and symmetry-breaking. Our solutions apply to many physical contexts, including the Bose-Einstein condensate and optical pulses in fibers.Comment: 11 pages, 7 figures -- revised versio

    The bio refinery; producing feed and fuel from grain

    Get PDF
    It is both possible and practicable to produce feed and fuel from grain. Using the value of grain to produce renewable energy for transport, while using the remaining protein content of the grain as a valuable protein source for livestock and for fish, can be seen as a complimentary and optimal use of all the grain constituents. Consideration must be given to maximise the value of the yeast components, as substantial yeast is generated during the fermentation of the grain starch to produce ethanol. Yeast is a nutritionally rich feed ingredient, with potential for use both as feed protein and as a feed supplement with possible immunity and gut health enhancing properties. Bioprocessing, with the consequent economies of scale, is a process whereby the value of grain can be optimised in a way that is traditional, natural and sustainable for primarily producing protein and oil for feed with a co-product ethanol as a renewable fuel
    corecore