All stationary solutions to the one-dimensional nonlinear Schroedinger
equation under box and periodic boundary conditions are presented in analytic
form. We consider the case of repulsive nonlinearity; in a companion paper we
treat the attractive case. Our solutions take the form of stationary trains of
dark or grey density-notch solitons. Real stationary states are in one-to-one
correspondence with those of the linear Schr\"odinger equation. Complex
stationary states are uniquely nonlinear, nodeless, and symmetry-breaking. Our
solutions apply to many physical contexts, including the Bose-Einstein
condensate and optical pulses in fibers.Comment: 11 pages, 7 figures -- revised versio