9 research outputs found

    Depth in Coxeter groups of type BB

    Get PDF
    The depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length

    Depth in Coxeter groups of type BB

    Get PDF
    International audienceThe depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length.La statistique profondeur a Ă©tĂ© introduite par Petersen et Tenner pour tout groupe de Coxeter WW. Elle est dĂ©finie pour tout w∈Ww \in W Ă  partir de ses factorisations en produit de rĂ©flexions (non nĂ©cessairement simples). Pour le type BB, nous introduisons un algorithme calculant la profondeur, et donnant une formule explicite pour cette statistique. On utilise par ailleurs cet algorithme pour caractĂ©riser tous les Ă©lĂ©ments ayant une profondeur Ă©gale Ă  leur longueur. Ces derniers s’avĂšrent ĂȘtre les Ă©lĂ©ments pleinement commutatifs “hauts-et-bas” introduits par Stembridge. Nous donnons enfin une caractĂ©risation des Ă©lĂ©ments dont la longueur absolue, la profondeur et la longueur coĂŻncident

    Depth in Coxeter groups of type BB

    No full text
    The depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length.La statistique profondeur a Ă©tĂ© introduite par Petersen et Tenner pour tout groupe de Coxeter WW. Elle est dĂ©finie pour tout w∈Ww \in W Ă  partir de ses factorisations en produit de rĂ©flexions (non nĂ©cessairement simples). Pour le type BB, nous introduisons un algorithme calculant la profondeur, et donnant une formule explicite pour cette statistique. On utilise par ailleurs cet algorithme pour caractĂ©riser tous les Ă©lĂ©ments ayant une profondeur Ă©gale Ă  leur longueur. Ces derniers s’avĂšrent ĂȘtre les Ă©lĂ©ments pleinement commutatifs “hauts-et-bas” introduits par Stembridge. Nous donnons enfin une caractĂ©risation des Ă©lĂ©ments dont la longueur absolue, la profondeur et la longueur coĂŻncident

    Depth in classical Coxeter groups

    No full text
    International audienc

    Interferons: cell signalling, immune modulation, antiviral responses and virus countermeasures.

    No full text

    Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures

    No full text
    corecore