9 research outputs found
Depth in Coxeter groups of type
The depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length
Depth in Coxeter groups of type
International audienceThe depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length.La statistique profondeur a Ă©tĂ© introduite par Petersen et Tenner pour tout groupe de Coxeter . Elle est dĂ©finie pour tout Ă partir de ses factorisations en produit de rĂ©flexions (non nĂ©cessairement simples). Pour le type , nous introduisons un algorithme calculant la profondeur, et donnant une formule explicite pour cette statistique. On utilise par ailleurs cet algorithme pour caractĂ©riser tous les Ă©lĂ©ments ayant une profondeur Ă©gale Ă leur longueur. Ces derniers sâavĂšrent ĂȘtre les Ă©lĂ©ments pleinement commutatifs âhauts-et-basâ introduits par Stembridge. Nous donnons enfin une caractĂ©risation des Ă©lĂ©ments dont la longueur absolue, la profondeur et la longueur coĂŻncident
Depth in Coxeter groups of type
The depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length.La statistique profondeur a Ă©tĂ© introduite par Petersen et Tenner pour tout groupe de Coxeter . Elle est dĂ©finie pour tout Ă partir de ses factorisations en produit de rĂ©flexions (non nĂ©cessairement simples). Pour le type , nous introduisons un algorithme calculant la profondeur, et donnant une formule explicite pour cette statistique. On utilise par ailleurs cet algorithme pour caractĂ©riser tous les Ă©lĂ©ments ayant une profondeur Ă©gale Ă leur longueur. Ces derniers sâavĂšrent ĂȘtre les Ă©lĂ©ments pleinement commutatifs âhauts-et-basâ introduits par Stembridge. Nous donnons enfin une caractĂ©risation des Ă©lĂ©ments dont la longueur absolue, la profondeur et la longueur coĂŻncident