48 research outputs found

    Gaia-ESO Survey: INTRIGOSS - A New Library of High-resolution Synthetic Spectra

    Get PDF
    We present a high resolution synthetic spectral library, INTRIGOSS, designed for studying FGK stars. The library is based on atmosphere models computed with specified individual element abundances via ATLAS12 code. Normalized SPectra (NSP) and surface Flux SPectra (FSP), in the 4830-5400 A, wavelength range, were computed with the SPECTRUM code. INTRIGOSS uses the solar composition by Grevesse et al. 2007 and four [alpha/Fe] abundance ratios and consists of 15,232 spectra. The synthetic spectra are computed with astrophysical gf-values derived by comparing synthetic predictions with a very high SNR solar spectrum and the UVES-U580 spectra of five cool giants. The validity of the NSPs is assessed by using the UVES-U580 spectra of 2212 stars observed in the framework of the Gaia-ESO Survey and characterized by homogeneous and accurate atmospheric parameter values and by detailed chemical compositions. The greater accuracy of NSPs with respect to spectra from the AMBRE, GES_Grid, PHOENIX, C14, and B17 synthetic spectral libraries is demonstrated by evaluating the consistency of the predictions of the different libraries for the UVES-U580 sample stars. The validity of the FSPs is checked by comparing their prediction with both observed spectral energy distribution and spectral indices. The comparison of FSPs with SEDs derived from ELODIE, INDO--U.S., and MILES libraries indicates that the former reproduce the observed flux distributions within a few percent and without any systematic trend. The good agreement between observational and synthetic Lick/SDSS indices shows that the predicted blanketing of FSPs well reproduces the observed one, thus confirming the reliability of INTRIGOSS FSPs

    The Gaia-ESO Public Spectroscopic Survey: Motivation, implementation, GIRAFFE data processing, analysis, and final data products

    Get PDF
    The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100,000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper (arXiv:2206.02901) introduces the survey results. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. The Gaia-ESO Survey obtained 202,000 spectra of 115,000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Lunar samples record an impact 4.2 billion years ago that may have formed the Serenitatis Basin

    Get PDF
    Impact cratering on the Moon and the derived size-frequency distribution functions of lunar impact craters are used to determine the ages of unsampled planetary surfaces across the Solar System. Radiometric dating of lunar samples provides an absolute age baseline, however, crater-chronology functions for the Moon remain poorly constrained for ages beyond 3.9 billion years. Here we present U–Pb geochronology of phosphate minerals within shocked lunar norites of a boulder from the Apollo 17 Station 8. These minerals record an older impact event around 4.2 billion years ago, and a younger disturbance at around 0.5 billion years ago. Based on nanoscale observations using atom probe tomography, lunar cratering records, and impact simulations, we ascribe the older event to the formation of the large Serenitatis Basin and the younger possibly to that of the Dawes crater. This suggests the Serenitatis Basin formed unrelated to or in the early stages of a protracted Late Heavy Bombardment

    Three’s Company: An Additional Non-transiting Super-Earth in the Bright HD 3167 System, and Masses for All Three Planets

    Get PDF
    HD 3167 is a bright (V = 8.9), nearby K0 star observed by the NASA K2 mission (EPIC 220383386), hosting two small, short-period transiting planets. Here we present the results of a multi-site, multi-instrument radial velocity campaign to characterize the HD 3167 system. The masses of the transiting planets are 5.02±0.38 MEarth for HD 3167 b, a hot super-Earth with a likely rocky composition (ρb = 5.60+2.15-1.43g cm-3), and 9.80+1.30-1.24 MEarth for HD 3167 c, a warm sub-Neptune with a likely substantial volatile complement (ρc = 1.97+0.94-0.59 g cm-3). We explore the possibility of atmospheric composition analysis and determine that planet c is amenable to transmission spectroscopy measurements, and planet b is a potential thermal emission target. We detect a third, non-transiting planet, HD 3167 d, with a period of 8.509+/-0.045 d (between planets b and c) and a minimum mass of 6.90±0.71 MEarth. We are able to constrain the mutual inclination of planet d with planets b and c: we rule out mutual inclinations below 1.3 degrees as we do not observe transits of planet d. From 1.3-40 degrees, there are viewing geometries invoking special nodal configurations which result in planet d not transiting some fraction of the time. From 40-60 degrees, Kozai-Lidov oscillations increase the system's instability, but it can remain stable for up to 100Myr. Above 60 degrees, the system is unstable. HD 3167 promises to be a fruitful system for further study and a preview of the many exciting systems expected from the upcoming NASATESS mission.Publisher PDFPeer reviewe
    corecore