692 research outputs found

    Neurodegenerative phenotypes in an A53T α-synuclein transgenic mouse model are independent of LRRK2

    Get PDF
    Mutations in the genes encoding LRRK2 and α-synuclein cause autosomal dominant forms of familial Parkinson's disease (PD). Fibrillar forms of α-synuclein are a major component of Lewy bodies, the intracytoplasmic proteinaceous inclusions that are a pathological hallmark of idiopathic and certain familial forms of PD. LRRK2 mutations cause late-onset familial PD with a clinical, neurochemical and, for the most part, neuropathological phenotype that is indistinguishable from idiopathic PD. Importantly, α-synuclein-positive Lewy bodies are the most common pathology identified in the brains of PD subjects harboring LRRK2 mutations. These observations may suggest that LRRK2 functions in a common pathway with α-synuclein to regulate its aggregation. To explore the potential pathophysiological interaction between LRRK2 and α-synuclein in vivo, we modulated LRRK2 expression in a well-established human A53T α-synuclein transgenic mouse model with transgene expression driven by the hindbrain-selective prion protein promoter. Deletion of LRRK2 or overexpression of human G2019S-LRRK2 has minimal impact on the lethal neurodegenerative phenotype that develops in A53T α-synuclein transgenic mice, including premature lethality, pre-symptomatic behavioral deficits and human α-synuclein or glial neuropathology. We also find that endogenous or human LRRK2 and A53T α-synuclein do not interact together to influence the number of nigrostriatal dopaminergic neurons. Taken together, our data suggest that α-synuclein-related pathology, which occurs predominantly in the hindbrain of this A53T α-synuclein mouse model, occurs largely independently from LRRK2 expression. These observations fail to provide support for a pathophysiological interaction of LRRK2 and α-synuclein in vivo, at least within neurons of the mouse hindbrai

    Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily

    Get PDF
    Mutations in LRRK2 cause autosomal dominant Parkinson's disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase domains, and putative protein-protein interaction domains. Familial PD mutations alter the GTPase and kinase activity of LRRK2 in vitro. LRRK2 is suggested to regulate a number of cellular pathways although the underlying mechanisms are poorly understood. To explore such mechanisms, it has proved informative to identify LRRK2-interacting proteins, some of which serve as LRRK2 kinase substrates. Here, we identify common interactions of LRRK2 with members of the dynamin GTPase superfamily. LRRK2 interacts with dynamin 1-3 that mediate membrane scission in clathrin-mediated endocytosis and with dynamin-related proteins that mediate mitochondrial fission (Drp1) and fusion (mitofusins and OPA1). LRRK2 partially co-localizes with endosomal dynamin-1 or with mitofusins and OPA1 at mitochondrial membranes. The subcellular distribution and oligomeric complexes of dynamin GTPases are not altered by modulating LRRK2 in mouse brain, whereas mature OPA1 levels are reduced in G2019S PD brains. LRRK2 enhances mitofusin-1 GTP binding, whereas dynamin-1 and OPA1 serve as modest substrates of LRRK2-mediated phosphorylation in vitro. While dynamin GTPase orthologs are not required for LRRK2-induced toxicity in yeast, LRRK2 functionally interacts with dynamin-1 and mitofusin-1 in cultured neurons. LRRK2 attenuates neurite shortening induced by dynamin-1 by reducing its levels, whereas LRRK2 rescues impaired neurite outgrowth induced by mitofusin-1 potentially by reversing excessive mitochondrial fusion. Our study elucidates novel functional interactions of LRRK2 with dynamin-superfamily GTPases that implicate LRRK2 in the regulation of membrane dynamics important for endocytosis and mitochondrial morpholog

    Disability quotas: past or future policy?

    Get PDF
    This article considers the issues associated with the use of quota systems for the employment of workers with a disability. It examines the use and experiences of such quotas in Italy, Russia and the United Kingdom. Italy has a long established quota for the employment of such workers, whilst the modern Russian system it is a more recent innovation. In contrast the UK abandoned its quotas in the 1990s. We draw on the experiences of the three countries to consider generally whether the use of quotas is either an acceptable means of encouraging employers to take on disabled workers, or is necessary to achieve this objective

    Probing the competition among different coordination motifs in metal-ciprofloxacin complexes through IRMPD spectroscopy and DFT calculations

    Get PDF
    The vibrational spectra of ciprofloxacin complexes with monovalent (Li+, Na+, K+, Ag+) and polyvalent (Mg2+, Al3+) metal ions are recorded in the range 1000-1900 cm(-1) by means of infrared multiple-photon dissociation (IRMPD) spectroscopy. The IRMPD spectra are analyzed and interpreted in the light of density functional theory (DFT)-based quantum chemical calculations in order to identify the possible structures present under our experimental conditions. For each metal-ciprofloxacin complex, four isomers are predicted, considering different chelation patterns. A good agreement is found between the measured IRMPD spectrum and the calculated absorption spectrum of the most stable isomer for each complex. Metal ion size and charge are found to drive the competition among the different coordination motifs: small size and high charge density metal ions prefer to coordinate the quinolone between the two carbonyl oxygen atoms, whereas large-size metal ions prefer the carboxylate group as a coordination site. In the latter case, an intramolecular hydrogen bond compensates the weaker interaction established by these cations. The role of the metal cation on the stabilization of ionic and nonionic structures of ciprofloxacin is also investigated. It is found that large-size metal ions preferentially stabilize charge separated motifs and that the increase of metal ion charge has a stabilizing effect on the zwitterionic form of ciprofloxacin

    Genome-wide transcriptional response of primary alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus

    Get PDF
    Porcine reproductive and respiratory syndrome is a major cause of economic loss for the swine industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) triggers weak and atypical innate immune responses, but key genes and mechanisms by which the virus interferes with the host innate immunity have not yet been elucidated. In this study, genes that control the response of the main target of PRRSV, porcine alveolar macrophages (PAMs), were profiled in vitro with a time-course experiment spanning the first round of virus replication. PAMs were obtained from six piglets and challenged with the Lelystad PRRSV strain, and gene expression was investigated using Affymetrix microarrays and real-time PCR. Of the 1409 differentially expressed transcripts identified by analysis of variance, two, five, 25, 16 and 100 differed from controls by a minimum of 1.5-fold at 1, 3, 6, 9 and 12 h post-infection (p.i.), respectively. A PRRSV infection effect was detectable between 3 and 6 h p.i., and was characterized by a consistent downregulation of gene expression, followed by the start of the host innate immune response at 9 h p.i. The expression of beta interferon 1 (IFN-β), but not of IFN-α, was strongly upregulated, whilst few genes commonly expressed in response to viral infections and/or induced by interferons were found to be differentially expressed. A predominance of anti-apoptotic transcripts (e.g. interleukin-10), a shift towards a T-helper cell type 2 response and a weak upregulation of tumour necrosis factor-α expression were observed within 12 h p.i., reinforcing the hypotheses that PRRSV has developed sophisticated mechanisms to escape the host defence

    A divergent role for estrogen receptor-beta in node-positive and node-negative breast cancer classified according to molecular subtypes: an observational prospective study

    Get PDF
    Introduction: Estrogen receptor-alpha (ER-alpha) and progesterone receptor (PgR) are consolidated predictors of response to hormonal therapy (HT). In contrast, little information regarding the role of estrogen receptor-beta (ER-beta) in various breast cancer risk groups treated with different therapeutic regimens is available. In particular, there are no data concerning ER-beta distribution within the novel molecular breast cancer subtypes luminal A (LA) and luminal B (LB), HER2 (HS), and triple-negative (TN). Methods: We conducted an observational prospective study using immunohistochemistry to evaluate ER-beta expression in 936 breast carcinomas. Associations with conventional biopathological factors and with molecular subtypes were analyzed by multiple correspondence analysis (MCA), while univariate and multivariate Cox regression analysis and classification and regression tree analysis were applied to determine the impact of ER-beta on disease-free survival in the 728 patients with complete follow-up data. Results: ER-beta evenly distributes (55.5%) across the four molecular breast cancer subtypes, confirming the lack of correlation between ER-beta and classical prognosticators. However, the relationships among the biopathological factors, analyzed by MCA, showed that ER-beta positivity is located in the quadrant containing more aggressive phenotypes such as HER2 and TN or ER-alpha/PgR/Bcl2- tumors. Kaplan-Meier curves and Cox regression analysis identified ER-beta as a significant discriminating factor for disease-free survival both in the node-negative LA (P = 0.02) subgroup, where it is predictive of response to HT, and in the node-positive LB (P = 0.04) group, where, in association with PgR negativity, it conveys a higher risk of relapse. Conclusion: Our data indicated that, in contrast to node-negative patients, in node-positive breast cancer patients, ER-beta positivity appears to be a biomarker related to a more aggressive clinical course. In this context, further investigations are necessary to better assess the role of the different ER-beta isoforms

    Country, Sex, EDSS Change and Therapy Choice Independently Predict Treatment Discontinuation in Multiple Sclerosis and Clinically Isolated Syndrome

    Get PDF
    We conducted a prospective study, MSBASIS, to assess factors leading to first treatment discontinuation in patients with a clinically isolated syndrome (CIS) and early relapsing-remitting multiple sclerosis (RRMS). The MSBASIS Study, conducted by MSBase Study Group members, enrols patients seen from CIS onset, reporting baseline demographics, cerebral magnetic resonance imaging (MRI) features and Expanded Disability Status Scale (EDSS) scores. Follow-up visits report relapses, EDSS scores, and the start and end dates of MS-specific therapies. We performed a multivariable survival analysis to determine factors within this dataset that predict first treatment discontinuation. A total of 2314 CIS patients from 44 centres were followed for a median of 2.7 years, during which time 1247 commenced immunomodulatory drug (IMD) treatment. Ninety percent initiated IMD after a diagnosis of MS was confirmed, and 10% while still in CIS status. Over 40% of these patients stopped their first IMD during the observation period. Females were more likely to cease medication than males (HR 1.36, p = 0.003). Patients treated in Australia were twice as likely to cease their first IMD than patients treated in Spain (HR 1.98, p = 0.001). Increasing EDSS was associated with higher rate of IMD cessation (HR 1.21 per EDSS unit, p<0.001), and intramuscular interferon-β-1a (HR 1.38, p = 0.028) and subcutaneous interferon-β-1a (HR 1.45, p = 0.012) had higher rates of discontinuation than glatiramer acetate, although this varied widely in different countries. Onset cerebral MRI features, age, time to treatment initiation or relapse on treatment were not associated with IMD cessation. In this multivariable survival analysis, female sex, country of residence, EDSS change and IMD choice independently predicted time to first IMD cessation
    • …
    corecore