15 research outputs found

    Acute Viral Hepatitis A – Clinical, Laboratory and Epidemiological Characteristics

    Get PDF
    Background and Aims: Infection with hepatitis A virus is still one of the most common causes of hepatitis worldwide. The clinical manifestation of acute hepatitis A (AHA) in adults can vary greatly, ranging from asymptomatic infection to severe and fulminant hepatitis. The aim of this study was to describe the demographic, clinical characteristics, laboratory features and hospital outcome of adult patients with AHA over a consecutive period of 4 years within an area from Eastern European country. Methods: Two hundred and two adult patients diagnosed with AHA were retrospective, observational and analytic analized over a period of 4 years. Based on prothrombin time less than 50, the study group was stratified in medium (79.2%) and severe forms (20.8%). We investigated the clinical, laboratory and epidemiological features. Statistical analysis were applied to compare the medium and severe forms of AHA. Results: Most patients (72.7%) were younger than 40 years. The main symptoms included: dyspepsia (72.07%), jaundice (86.63%), asteno-adynamia (86.72%), and flu-like symptoms (53.46%). The hemorrhagic cutaneous-mucous manifestations (6.93%) associated with the severe forms of AHA (OR =12.19, 95%CI -3.59 - 41.3, p =0.001). We found statistically significant differences for PT (p <0.001), INR (p <0.001), TQ (p <0.001), ALAT (p <0.001), ASAT (p <0.001), ALP (p <0.001) and platelets (p =0.009) between severe and medium AHA forms. We found that TQ, INR, ALAT and ASAT have the highest diagnostic values, statistically significant (p <0.05 ) for severe AHA forms with AUC (0.99, 0.99, 0.72, 0.70) at values of sensitivity (95%, 90.5%, 89%, 95%) and specificity (98%, 99%, 88%,94%). Conclusions Medium severity AHA forms were found in most of the study group patients (79.2%). The severe AHA forms were associated with hemorrhagic cutaneous-mucous manifestations (OR =12.19, p =0.001). The univariate analysis proved a negatively statistically significant correlation between IP and ALAT, ASAT. The present study revealed that TQ, INR and ALAT have the highest diagnostic values and are statistically significant for severe AHA forms

    The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom : 1990-2019

    Get PDF
    Funding Information: We thank Aurélie Paquirissamy, Géraud Moulas and the ARTTIC team for the great managerial support offered during the project. FAOSTAT statistics are produced and disseminated with the support of its member countries to the FAO regular budget. Annual, gap-filled and harmonized NGHGI uncertainty estimates for the EU and its member states were provided by the EU GHG inventory team (European Environment Agency and its European Topic Centre on Climate change mitigation). Most top-down inverse simulations referred to in this paper rely for the derivation of optimized flux fields on observational data provided by surface stations that are part of networks like ICOS (datasets: 10.18160/P7E9-EKEA , Integrated Non-CO Observing System, 2018a, and 10.18160/B3Q6-JKA0 , Integrated Non-CO Observing System, 2018b), AGAGE, NOAA (Obspack Globalview CH: 10.25925/20221001 , Schuldt et al., 2017), CSIRO and/or WMO GAW. We thank all station PIs and their organizations for providing these valuable datasets. We acknowledge the work of other members of the EDGAR group (Edwin Schaaf, Jos Olivier) and the outstanding scientific contribution to the VERIFY project of Peter Bergamaschi. Timo Vesala thanks ICOS-Finland, University of Helsinki. The TM5-CAMS inversions are available from https://atmosphere.copernicus.eu (last access: June 2022); Arjo Segers acknowledges support from the Copernicus Atmosphere Monitoring Service, implemented by the European Centre for Medium-Range Weather Forecasts on behalf of the European Commission (grant no. CAMS2_55). This research has been supported by the European Commission, Horizon 2020 Framework Programme (VERIFY, grant no. 776810). Ronny Lauerwald received support from the CLand Convergence Institute. Prabir Patra received support from the Environment Research and Technology Development Fund (grant no. JPMEERF20182002) of the Environmental Restoration and Conservation Agency of Japan. Pierre Regnier received financial support from the H2020 project ESM2025 – Earth System Models for the Future (grant no. 101003536). David Basviken received support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (METLAKE, grant no. 725546). Greet Janssens-Maenhout received support from the European Union's Horizon 2020 research and innovation program (CoCO, grant no. 958927). Tuula Aalto received support from the Finnish Academy (grants nos. 351311 and 345531). Sönke Zhaele received support from the ERC consolidator grant QUINCY (grant no. 647204).Peer reviewedPublisher PD

    The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom:1990-2020

    Get PDF
    Quantification of land surface-atmosphere fluxes of carbon dioxide (CO2) and their trends and uncertainties is essential for monitoring progress of the EU27+UK bloc as it strives to meet ambitious targets determined by both international agreements and internal regulation. This study provides a consolidated synthesis of fossil sources (CO2 fossil) and natural (including formally managed ecosystems) sources and sinks over land (CO2 land) using bottom-up (BU) and top-down (TD) approaches for the European Union and United Kingdom (EU27+UK), updating earlier syntheses (Petrescu et al., 2020, 2021). Given the wide scope of the work and the variety of approaches involved, this study aims to answer essential questions identified in the previous syntheses and understand the differences between datasets, particularly for poorly characterized fluxes from managed and unmanaged ecosystems. The work integrates updated emission inventory data, process-based model results, data-driven categorical model results, and inverse modeling estimates, extending the previous period 1990-2018 to the year 2020 to the extent possible. BU and TD products are compared with the European national greenhouse gas inventory (NGHGI) reported by parties including the year 2019 under the United Nations Framework Convention on Climate Change (UNFCCC). The uncertainties of the EU27+UK NGHGI were evaluated using the standard deviation reported by the EU member states following the guidelines of the Intergovernmental Panel on Climate Change (IPCC) and harmonized by gap-filling procedures. Variation in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), originate from within-model uncertainty related to parameterization as well as structural differences between models. By comparing the NGHGI with other approaches, key sources of differences between estimates arise primarily in activities. System boundaries and emission categories create differences in CO2 fossil datasets, while different land use definitions for reporting emissions from land use, land use change, and forestry (LULUCF) activities result in differences for CO2 land. The latter has important consequences for atmospheric inversions, leading to inversions reporting stronger sinks in vegetation and soils than are reported by the NGHGI. For CO2 fossil emissions, after harmonizing estimates based on common activities and selecting the most recent year available for all datasets, the UNFCCC NGHGI for the EU27+UK accounts for 926g±g13gTggCgyr-1, while eight other BU sources report a mean value of 948 [937,961]gTggCgyr-1 (25th, 75th percentiles). The sole top-down inversion of fossil emissions currently available accounts for 875gTggC in this same year, a value outside the uncertainty of both the NGHGI and bottom-up ensemble estimates and for which uncertainty estimates are not currently available. For the net CO2 land fluxes, during the most recent 5-year period including the NGHGI estimates, the NGHGI accounted for -91g±g32gTggCgyr-1, while six other BU approaches reported a mean sink of -62 [-117,-49]gTggCgyr-1, and a 15-member ensemble of dynamic global vegetation models (DGVMs) reported -69 [-152,-5]gTggCgyr-1. The 5-year mean of three TD regional ensembles combined with one non-ensemble inversion of -73gTggCgyr-1 has a slightly smaller spread (0th-100th percentiles of [-135,+45]gTggCgyr-1), and it was calculated after removing net land-atmosphere CO2 fluxes caused by lateral transport of carbon (crop trade, wood trade, river transport, and net uptake from inland water bodies), resulting in increased agreement with the NGHGI and bottom-up approaches. Results at the category level (Forest Land, Cropland, Grassland) generally show good agreement between the NGHGI and category-specific models, but results for DGVMs are mixed. Overall, for both CO2 fossil and net CO2 land fluxes, we find that current independent approaches are consistent with the NGHGI at the scale of the EU27+UK. We conclude that CO2 emissions from fossil sources have decreased over the past 30 years in the EU27+UK, while land fluxes are relatively stable: positive or negative trends larger (smaller) than 0.07 (-0.61)gTggCgyr-2 can be ruled out for the NGHGI. In addition, a gap on the order of 1000gTggCgyr-1 between CO2 fossil emissions and net CO2 uptake by the land exists regardless of the type of approach (NGHGI, TD, BU), falling well outside all available estimates of uncertainties. However, uncertainties in top-down approaches to estimate CO2 fossil emissions remain uncharacterized and are likely substantial, in addition to known uncertainties in top-down estimates of the land fluxes. The data used to plot the figures are available at 10.5281/zenodo.8148461 (McGrath et al., 2023).</p

    The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990–2020

    Get PDF
    Quantification of land surface–atmosphere fluxes of carbon dioxide (CO2) and their trends and uncertainties is essential for monitoring progress of the EU27+UK bloc as it strives to meet ambitious targets determined by both international agreements and internal regulation. This study provides a consolidated synthesis of fossil sources (CO2 fossil) and natural (including formally managed ecosystems) sources and sinks over land (CO2 land) using bottom-up (BU) and top-down (TD) approaches for the European Union and United Kingdom (EU27+UK), updating earlier syntheses (Petrescu et al., 2020, 2021). Given the wide scope of the work and the variety of approaches involved, this study aims to answer essential questions identified in the previous syntheses and understand the differences between datasets, particularly for poorly characterized fluxes from managed and unmanaged ecosystems. The work integrates updated emission inventory data, process-based model results, data-driven categorical model results, and inverse modeling estimates, extending the previous period 1990–2018 to the year 2020 to the extent possible. BU and TD products are compared with the European national greenhouse gas inventory (NGHGI) reported by parties including the year 2019 under the United Nations Framework Convention on Climate Change (UNFCCC). The uncertainties of the EU27+UK NGHGI were evaluated using the standard deviation reported by the EU member states following the guidelines of the Intergovernmental Panel on Climate Change (IPCC) and harmonized by gap-filling procedures. Variation in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), originate from within-model uncertainty related to parameterization as well as structural differences between models. By comparing the NGHGI with other approaches, key sources of differences between estimates arise primarily in activities. System boundaries and emission categories create differences in CO2 fossil datasets, while different land use definitions for reporting emissions from land use, land use change, and forestry (LULUCF) activities result in differences for CO2 land. The latter has important consequences for atmospheric inversions, leading to inversions reporting stronger sinks in vegetation and soils than are reported by the NGHGI. For CO2 fossil emissions, after harmonizing estimates based on common activities and selecting the most recent year available for all datasets, the UNFCCC NGHGI for the EU27+UK accounts for 926 ± 13 Tg C yr−1, while eight other BU sources report a mean value of 948 [937,961] Tg C yr−1 (25th, 75th percentiles). The sole top-down inversion of fossil emissions currently available accounts for 875 Tg C in this same year, a value outside the uncertainty of both the NGHGI and bottom-up ensemble estimates and for which uncertainty estimates are not currently available. For the net CO2 land fluxes, during the most recent 5-year period including the NGHGI estimates, the NGHGI accounted for −91 ± 32 Tg C yr−1, while six other BU approaches reported a mean sink of −62 [] Tg C yr−1, and a 15-member ensemble of dynamic global vegetation models (DGVMs) reported −69 [] Tg C yr−1. The 5-year mean of three TD regional ensembles combined with one non-ensemble inversion of −73 Tg C yr−1 has a slightly smaller spread (0th–100th percentiles of [] Tg C yr−1), and it was calculated after removing net land–atmosphere CO2 fluxes caused by lateral transport of carbon (crop trade, wood trade, river transport, and net uptake from inland water bodies), resulting in increased agreement with the NGHGI and bottom-up approaches. Results at the category level (Forest Land, Cropland, Grassland) generally show good agreement between the NGHGI and category-specific models, but results for DGVMs are mixed. Overall, for both CO2 fossil and net CO2 land fluxes, we find that current independent approaches are consistent with the NGHGI at the scale of the EU27+UK. We conclude that CO2 emissions from fossil sources have decreased over the past 30 years in the EU27+UK, while land fluxes are relatively stable: positive or negative trends larger (smaller) than 0.07 (−0.61) Tg C yr−2 can be ruled out for the NGHGI. In addition, a gap on the order of 1000 Tg C yr−1 between CO2 fossil emissions and net CO2 uptake by the land exists regardless of the type of approach (NGHGI, TD, BU), falling well outside all available estimates of uncertainties. However, uncertainties in top-down approaches to estimate CO2 fossil emissions remain uncharacterized and are likely substantial, in addition to known uncertainties in top-down estimates of the land fluxes. The data used to plot the figures are available at https://doi.org/10.5281/zenodo.8148461 (McGrath et al., 2023)

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    The consolidated European synthesis of CH4 and N2O emissions for EU27 and UK: 1990–2020

    No full text
    Knowledge of the spatial distribution of the fluxes of greenhouse gases and their temporal variability as well as flux attribution to natural and anthropogenic processes is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement and to inform its Global Stocktake. This study provides a consolidated synthesis of CH4 and N2O emissions using bottom-up (BU) and top-down (TD) approaches for the European Union and UK (EU27+UK) and updates earlier syntheses (Petrescu et al., 2020, 2021). The work integrates updated emission inventory data, process-based model results, data-driven sector model results, inverse modelling estimates, and extends the previous period 1990–2017 to 2020. BU and TD products are compared with European National GHG Inventories (NGHGI) reported by Parties under the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. The uncertainties of NGHGIs were evaluated using the standard deviation obtained by varying parameters of inventory calculations, reported by the EU Member States following the guidelines of the Intergovernmental Panel on Climate Change (IPCC) and harmonized by gap-filling procedures. Variation in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arise from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, the activities included are a key source of bias between estimates e.g. anthropogenic and natural fluxes, which, in atmospheric inversions are sensitive to the prior geospatial distribution of emissions. For CH4 emissions, over the updated 2015–2019 period, which covers a sufficiently robust number of overlapping estimates, and most importantly the NGHGIs, the anthropogenic BU approaches are directly comparable, accounting for mean emissions of 20.5 Tg CH4 yr−1 (EDGAR v5v6.0, last year 2018) and 18.4 Tg CH4 yr−1 (GAINS, 2015), close to the NGHGI estimates of 17.5 ± 2.1 Tg CH4 yr−1. TD inversions estimates give higher emission estimates, as they also detect natural emissions. Over the same period, high resolution regional TD inversions report a mean emission of 34 Tg CH4 yr−1. Coarser-resolution global-scale TD inversions result in emission estimates of 23 Tg CH4 yr−1 and 24 Tg CH4 yr−1 inferred from GOSAT and surface (SURF) network atmospheric measurements, respectively. The magnitude of natural peatland and mineral soils emissions from the JSBACH-HIMMELI model, natural rivers, lakes and reservoirs emissions, geological sources and biomass burning together could account for the gap between NGHGI and inversions and account for 8 Tg CH4 yr−1. For N2O emissions, over the 2015–2019 period, both BU products (EDGAR v5v6.0 and GAINS) report a mean value of anthropogenic emissions of 0.9 Tg N2O yr−1, close to the NGHGI data (0.8 ± 55 % Tg N2O yr−1). Over the same period, the mean of TD global and regional inversions was 1.4 Tg N2O yr−1 (excluding TOMCAT which reported no data). The TD and BU comparison method defined in this study can be "operationalized" for future annual updates for the calculation of CH4 and N2O budgets at the national and EU27+UK scales. Future comparability will be enhanced with further steps involving analysis at finer temporal resolutions and estimation of emissions over intra-annual timescales, of great importance for CH4 and N2O, which may help identify sector contributions to divergence between prior and posterior estimates at the annual/inter-annual scale. Even if currently comparison between CH4 and N2O inversions estimates and NGHGIs is highly uncertain because of the large spread in the inversion results, TD inversions inferred from atmospheric observations represent the most independent data against which inventory totals can be compared. With anticipated improvements in atmospheric modelling and observations, as well as modelling of natural fluxes, TD inversions may arguably emerge as the most powerful tool for verifying emissions inventories for CH4, N2O and other GHGs. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.6992472 (Petrescu et al., 2022)

    The consolidated European synthesis of CO2 emissions and removals for EU27 and UK: 1990–2020

    No full text
    Quantification of land surface-atmosphere fluxes of carbon dioxide (CO2) fluxes and their trends and uncertainties is essential for monitoring progress of the EU27+UK bloc as it strives to meet ambitious targets determined by both international agreements and internal regulation. This study provides a consolidated synthesis of fossil sources (CO2 fossil) and natural sources and sinks over land (CO2 land) using bottom-up (BU) and top-down (TD) approaches for the European Union and United Kingdom (EU27+UK), updating earlier syntheses (Petrescu et al., 2020, 2021b). Given the wide scope of the work and the variety of approaches involved, this study aims to answer essential questions identified in the previous syntheses and understand the differences between datasets, particularly for poorly characterized fluxes from managed ecosystems. The work integrates updated emission inventory data, process-based model results, data-driven sectoral model results, and inverse modeling estimates, extending the previous period 1990–2018 to the year 2020 to the extent possible. BU and TD products are compared with European National Greenhouse Gas Inventories (NGHGIs) reported by Parties including the year 2019 under the United Nations Framework Convention on Climate Change (UNFCCC). The uncertainties of the EU27+UK NGHGI were evaluated using the standard deviation reported by the EU Member States following the guidelines of the Intergovernmental Panel on Climate Change (IPCC) and harmonized by gap-filling procedures. Variation in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), originate from within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, key sources of differences between estimates arise primarily in activities. System boundaries and emission categories create differences in CO2 fossil datasets, while different land use definitions for reporting emissions from Land Use, Land Use Change and Forestry (LULUCF) activities result in differences for CO2 land. The latter has important consequences for atmospheric inversions, leading to inversions reporting stronger sinks in vegetation and soils than are reported by the NGHGI
    corecore