51 research outputs found

    Subcutaneous implantable cardioverter-defibrillator placement in a patient with a preexisting transvenous implantable cardioverter-defibrillator

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml

    Visual Evoked Potential Findings in Patients with Dyslexia

    Get PDF
    Purpose: The aim of this study was to compare the Visual Evoked Potential (VEP) findings in patients with dyslexia and in normal individuals.Patients and Methods: In this case-control study, we evaluated 26 eyes from 13 dyslexic patients over the period of 2018-2022. The control group consisted of 26 eyes from 13 age- and sex-matched healthy individuals. VEP was recorded for both the case and control groups. We compared the latency (in milliseconds) and amplitude of the VEP P100 peak between the patients and the controls.Results: The mean latency of the VEP P100 peak was significantly higher in the patient group, measuring 108.92 ± 3.84 milliseconds, compared to 97.46 ± 2.8 milliseconds in the control group (P < 0.01). Additionally, the mean amplitude of the VEP, P100 peak in the case group was significantly lower, at 2.96 ± 1.12 microvolts, in contrast to 6.38 ± 1.6 microvolts observed in the control group (P < 0.01).Conclusion: Based on the findings of this study, it is concluded that dyslexia may influence the visual pathway of the visual system, leading to changes that could potentially be evaluated using VEP testing

    Impact of Body Mass Index on the Association of Ankle-Brachial Index With All-Cause and Cardiovascular Mortality Results from the National Health and Nutrition Examination Survey

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Objective To assess the influence of body-mass index (BMI) on the association of ankle-brachial index (ABI) with mortality. Patients and Methods We conducted a prospective study of National Health and Nutrition Examination Survey participants enrolled from January 1, 1999 to December 31, 2002 with BMI and ABI data available. ABI categories were 1.3 (high). BMI categories were <30 kg/m2 (nonobese) and ≥30 kg/m2 (obese). Cardiovascular (CV) and all-cause mortality were assessed by National Death Index records. Cox proportional-hazards models and Kaplan-Meier survival estimates were used to compare groups. Results In total, 4614 subjects were included, with mean age 56±12 years and BMI 28±6 kg/m2. Median follow-up was 10.3 years (interquartile range [IQR]: 9.3 to 11.4 years). Low and high ABI were present in 7% and 8%, respectively. After adjustment, low ABI was associated with increased all-cause and CV mortality in nonobese (hazard ratio [HR] 1.5, 95% CI, 1.1-2.1 for all-cause and 3.0 [1.8-5.1] for CV mortality) and obese individuals (1.8 [1.2-2.7] and 2.5 [1.2-5.6], respectively) compared with reference. High ABI was associated with increased CV mortality in nonobese (2.2 [1.1-4.5]) but not obese patients; it was not associated with all-cause mortality overall or when stratified by BMI. Conclusion In a US cohort, weight influenced the prognostic significance of high ABI. This may be related to technical factors reducing compressibility of the calf arteries in obese persons compared with those who are nonobese.The University of Kansas (KU) One University Open Access Author Fund sponsored jointly by the KU ProvostKU Vice Chancellor for Research & Graduate StudiesKUMC Vice Chancellor for Research and managed jointly by the Libraries at the Medical Center and KU - Lawrence.KUMC Vice Chancellor for Research and managed jointly by the Libraries at the Medical Center and KU - Lawrenc

    Intercostal nerves pulsed radiofrequency for intractable neuralgia treatment in athletes with sport trauma of the chest: A case-series study

    Get PDF
    Background: Athletes with trauma to the chest could be injured and suffer from an acute disturbing chest wall pain due to intercostal neuralgia. Pulsed radiofrequency (PRF) is an emerging safe therapy in many neurologic pain syndromes. Objectives: This study aimed to determine the effect of PRF on intercostal neuralgic pain in athletes complaining of severe chest pain and limited range of motion. Materials and Methods: This case-series study was conducted on athlete patients who suffered from severe chest pain that has limited their function. Eighteen athletes who were absent from physical training and sports activity due to intercostal neuralgia in their current season were admitted to our pain clinic. Intercostal nerve PRF was used to treat patients. Pain scale and return to sports activity were measured after PRF. Results: The mean time of absence from sports activity was 1.3 ± 0.6 weeks. The mean score of pain severity (numeric rating scale NRS) was 8.46 ± 1.85. In this study, 16 of 18 (88%) patients had effective pain relief (NRS P = 0.001), 2 (P = 0.0015), and 4 (P = 0.0002) weeks following PRF compared to pre-PRF time. Conclusions: Pulsed radiofrequency is a suitable therapy for athletes with intercostal nerve entrapment pain, which provides adequate and quick pain relief, thus enabling them to resume their sport activities

    A Comparative Analysis of Clinical Characteristics and Laboratory Findings of COVID-19 between Intensive Care Unit and Non-Intensive Care Unit Pediatric Patients: A Multicenter, Retrospective, Observational Study from Iranian Network for Research in Viral

    Get PDF
    Introduction: To date, little is known about the clinical features of pediatric COVID-19 patients admitted to intensive care units (ICUs).&nbsp;Objective: Herein, we aimed to describe the differences in demographic characteristics, laboratory findings, clinical presentations, and outcomes of Iranian pediatric COVID-19 patients admitted to ICU versus those in non-ICU settings.&nbsp;Methods: This multicenter investigation involved 15 general and pediatrics hospitals and included cases with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection based on positive real-time reverse transcription polymerase chain reaction (RT-PCR) admitted to these centers between March and May 2020, during the initial peak of the COVID-19 pandemic in Iran.&nbsp;Results: Overall, 166 patients were included, 61 (36.7%) of whom required ICU admission. The highest number of admitted cases to ICU were in the age group of 1–5 years old. Malignancy and heart diseases were the most frequent underlying conditions. Dyspnea was the major symptom for ICU-admitted patients. There were significant decreases in PH, HCO3 and base excess, as well as increases in creatinine, creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and potassium levels between ICU-admitted and non-ICU patients. Acute respiratory distress syndrome (ARDS), shock, and acute cardiac injury were the most common features among ICU-admitted patients. The mortality rate in the ICU-admitted patients was substantially higher than non-ICU cases (45.9% vs. 1.9%, respectively; p&lt;0.001).&nbsp;Conclusions: Underlying diseases were the major risk factors for the increased ICU admissions and mortality rates in pediatric COVID-19 patients. There were few paraclinical parameters that could differentiate between pediatrics in terms of prognosis and serious outcomes of COVID-19. Healthcare providers should consider children as a high-risk group, especially those with underlying medical conditions

    Association of polymorphisms in TLR3 and TLR7 genes with susceptibility to COVID-19 among Iranian population: a retrospective case-control study

    Get PDF
    Background and Objectives: Host genetic changes like single nucleotide polymorphisms (SNPs) are one of the main factors influencing susceptibility to viral infectious diseases. This study aimed to investigate the association between the host SNP of Toll-Like Receptor3 (TLR3) and Toll-Like Receptor7 (TLR7) genes involved in the immune system and susceptibility to COVID-19 in a sample of the Iranian population. Materials and Methods: This retrospective case-control study evaluated 244 hospitalized COVID-19 patients as the case group and 156 suspected COVID-19 patients with mild signs as the control group. The genomic DNA of patients was genotyped for TLR7 (rs179008 and rs179009) and TLR3 (rs3775291 and rs3775296) SNPs using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: A significant association between rs179008 SNP in the TLR7 gene and the susceptibility of COVID-19 was found between case and control groups. The AT genotype (Heterozygous) of TLR7 rs179008 A>T polymorphism showed a significant association with a 2.261-fold increased odds of COVID-19 (P=0.003; adjusted OR: 2.261; 99% CI: 1.117-4.575). In addition, a significant association between TC genotype of TLR7 rs179009 T>C polymorphism and increased odds of COVID-19 (P 0.004167). Conclusion: SNPs in TLR7 rs179008 and rs179009 genotypes are considered host genetic factors that could be influenced individual susceptibility to COVID-19. The SNPs in TLR3 (rs3775296 and rs3775291) showed no significant association with COVID-19 in Iranian population

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15–39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods: Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15–39 years to define adolescents and young adults. Findings: There were 1·19 million (95% UI 1·11–1·28) incident cancer cases and 396 000 (370 000–425 000) deaths due to cancer among people aged 15–39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59·6 [54·5–65·7] per 100 000 person-years) and high-middle SDI countries (53·2 [48·8–57·9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14·2 [12·9–15·6] per 100 000 person-years) and middle SDI (13·6 [12·6–14·8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23·5 million (21·9–25·2) DALYs to the global burden of disease, of which 2·7% (1·9–3·6) came from YLDs and 97·3% (96·4–98·1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation: Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Funding: Bill &amp; Melinda Gates Foundation, American Lebanese Syrian Associated Charities, St Baldrick's Foundation, and the National Cancer Institute

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042
    • …
    corecore