39 research outputs found
Total Variability Space for LDA-based multi-viewtext categorization
Paru sous le titre Compact Multiview Representation of Documents Based on the Total Variability SpaceInternational audienceMapping text document into LDA-based topic-space is a classical way to extract high level representation of text documents. Unfortunatly , LDA is higly sensitive to hyper-parameters related to class number or word and topic distribution , and there is not any systematic way to prior estimate optimal configurations. Morover , various hyperparameter configurations offer complementary views on the document. In this paper , we propose a method based on a two-step process that , first , expands representation space by using a set of topic spaces and , second , compacts representation space by removing poorly relevant dimensions. These two steps are based respectivelly on multi-view LDA-based representation spaces and factor-analysis models. This model provides a view-independant representation of documents while extracting complementary information from a massive multi-view representation. Experiments are conducted on the DECODA conversation corpus and Reuters-21578 textual dataset. Results show the effectiveness of the proposed multi-view compact representation paradigm. The proposed categorization system reaches an accuracy of 86. 9% and 86. 5% respectively with manual and automatic transcriptions of conversations , and a macro-F1 of 80% during a classification task of the well-known studied Reuters-21578 corpus , with a significant gain compared to the baseline (best single topic space configuration) , as well as methods and document representations previously studied
L'analyse factorielle pour la modélisation acoustique des systÚmes de reconnaissance de la parole
Dans cette thÚse, nous proposons d utiliser des techniques fondées sur l analyse factorielle pour la modélisation acoustique pour le traitement automatique de la parole, notamment pour la Reconnaissance Automatique de la parole. Nous nous sommes, dans un premier temps, intéressés à la réduction de l empreinte mémoire des modÚles acoustiques. Notre méthode à base d analyse factorielle a démontré une capacité de mutualisation des paramÚtres des modÚles acoustiques, tout en maintenant des performances similaires à celles des modÚles de base. La modélisation proposée nous conduit à décomposer l ensemble des paramÚtres des modÚles acoustiques en sous-ensembles de paramÚtres indépendants, ce qui permet une grande flexibilité pour d éventuelles adaptations (locuteurs, genre, nouvelles tùches).Dans les modélisations actuelles, un état d un ModÚle de Markov Caché (MMC) est représenté par un mélange de Gaussiennes (GMM : Gaussian Mixture Model). Nous proposons, comme alternative, une représentation vectorielle des états : les fac- teur d états. Ces facteur d états nous permettent de mesurer efficacement la similarité entre les états des MMC au moyen d une distance euclidienne, par exemple. Grùce à cette représenation vectorielle, nous proposons une méthode simple et efficace pour la construction de modÚles acoustiques avec des états partagés. Cette procédure s avÚre encore plus efficace dans le cas de langues peu ou trÚs peu dotées en ressouces et enconnaissances linguistiques. Enfin, nos efforts se sont portés sur la robustesse des systÚmes de reconnaissance de la parole face aux variabilités acoustiques, et plus particuliÚrement celles générées par l environnement. Nous nous sommes intéressés, dans nos différentes expérimentations, à la variabilité locuteur, à la variabilité canal et au bruit additif. Grùce à notre approche s appuyant sur l analyse factorielle, nous avons démontré la possibilité de modéliser ces différents types de variabilité acoustique nuisible comme une composante additive dans le domaine cepstral. Nous soustrayons cette composante des vecteurs cepstraux pour annuler son effet pénalisant pour la reconnaissance de la paroleIn this thesis, we propose to use techniques based on factor analysis to build acoustic models for automatic speech processing, especially Automatic Speech Recognition (ASR). Frstly, we were interested in reducing the footprint memory of acoustic models. Our factor analysis-based method demonstrated that it is possible to pool the parameters of acoustic models and still maintain performance similar to the one obtained with the baseline models. The proposed modeling leads us to deconstruct the ensemble of the acoustic model parameters into independent parameter sub-sets, which allow a great flexibility for particular adaptations (speakers, genre, new tasks etc.). With current modeling techniques, the state of a Hidden Markov Model (HMM) is represented by a combination of Gaussians (GMM : Gaussian Mixture Model). We propose as an alternative a vector representation of states : the factors of states. These factors of states enable us to accurately measure the similarity between the states of the HMM by means of an euclidean distance for example. Using this vector represen- tation, we propose a simple and effective method for building acoustic models with shared states. This procedure is even more effective when applied to under-resourced languages. Finally, we concentrated our efforts on the robustness of the speech recognition sys- tems to acoustic variabilities, particularly those generated by the environment. In our various experiments, we examined speaker variability, channel variability and additive noise. Through our factor analysis-based approach, we demonstrated the possibility of modeling these different types of acoustic variability as an additive component in the cepstral domain. By compensation of this component from the cepstral vectors, we are able to cancel out the harmful effect it has on speech recognitionAVIGNON-Bib. numérique (840079901) / SudocSudocFranceF
Characterization of CTX-M ESBLs in Enterobacter cloacae, Escherichia coli and Klebsiella pneumoniae clinical isolates from Cairo, Egypt
<p>Abstract</p> <p>Background</p> <p>A high rate of resistance to 3<sup>rd </sup>generation cephalosporins among Enterobacteriaceae isolates from Egypt has been previously reported. This study aims to characterize the resistance mechanism (s) to extended spectrum cephalosporins among resistant clinical isolates at a medical institute in Cairo, Egypt.</p> <p>Methods</p> <p>Nonconsecutive <it>Klebsiella pneumoniae </it>(Kp), <it>Enterobacter cloacae </it>(ENT) and <it>Escherichia coli </it>(EC) isolates were obtained from the clinical laboratory at the medical institute. Antibiotic susceptibility was tested by CLSI disk diffusion and ESBL confirmatory tests. MICs were determined using broth microdilution. Isoelectric focusing (IEF) was used to determine the pI values, inhibitor profiles, and cefotaxime (CTX) hydrolysis by the ÎČ-lactamases. PCR and sequencing were performed using <it>bla</it><sub>CTX-M </sub>and IS<it>Ecp1</it>-specific primers, with DNA obtained from the clinical isolates. Conjugation experiments were done to determine the mobility of <it>bla</it><sub>CTX-M</sub>.</p> <p>Results</p> <p>All five clinical isolates were resistant to CTX, and were positive for ESBL screening. IEF revealed multiple ÎČ-lactamases produced by each isolate, including a ÎČ-lactamase with a pI of 8.0 in Kp and ENT and a ÎČ-lactamase with a pI of 9.0 in EC. Both ÎČ-lactamases were inhibited by clavulanic acid and hydrolyzed CTX. PCR and sequence analysis identified <it>bla</it><sub>CTX-M-14 </sub>in Kp and ENT and a <it>bla</it><sub>CTX-M-15 </sub>in EC. Both <it>bla</it><sub>CTX-M-14 </sub>and <it>bla</it><sub>CTX-M-15 </sub>were preceded by IS<it>Ecp1 </it>elements as revealed by partial sequence analysis of the upstream region of the <it>bla</it><sub>CTX-M </sub>genes. <it>bla</it><sub>CTX-M-15</sub> was transferable but not <it>bla</it><sub>CTX-M-14</sub>.</p> <p>Conclusion</p> <p>This is the first report of CTX-M-14 in Kp and ENT isolates from Egypt, the Middle East and North Africa.</p
The Genome Sequence of the Grape Phylloxera Provides Insights into the Evolution, Adaptation, and Invasion Routes of an Iconic Pest
Background: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150âyears, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. Results: Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved >â2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. Conclusions: The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture
Lâanalyse factorielle pour la modĂ©lisation acoustique des systĂšmes de reconnaissance de la parole
In this thesis, we propose to use techniques based on factor analysis to build acoustic models for automatic speech processing, especially Automatic Speech Recognition (ASR). Frstly, we were interested in reducing the footprint memory of acoustic models. Our factor analysis-based method demonstrated that it is possible to pool the parameters of acoustic models and still maintain performance similar to the one obtained with the baseline models. The proposed modeling leads us to deconstruct the ensemble of the acoustic model parameters into independent parameter sub-sets, which allow a great flexibility for particular adaptations (speakers, genre, new tasks etc.). With current modeling techniques, the state of a Hidden Markov Model (HMM) is represented by a combination of Gaussians (GMM : Gaussian Mixture Model). We propose as an alternative a vector representation of states : the factors of states. These factors of states enable us to accurately measure the similarity between the states of the HMM by means of an euclidean distance for example. Using this vector represen- tation, we propose a simple and effective method for building acoustic models with shared states. This procedure is even more effective when applied to under-resourced languages. Finally, we concentrated our efforts on the robustness of the speech recognition sys- tems to acoustic variabilities, particularly those generated by the environment. In our various experiments, we examined speaker variability, channel variability and additive noise. Through our factor analysis-based approach, we demonstrated the possibility of modeling these different types of acoustic variability as an additive component in the cepstral domain. By compensation of this component from the cepstral vectors, we are able to cancel out the harmful effect it has on speech recognitionDans cette thĂšse, nous proposons dâutiliser des techniques fondĂ©es sur lâanalyse factorielle pour la modĂ©lisation acoustique pour le traitement automatique de la parole, notamment pour la Reconnaissance Automatique de la parole. Nous nous sommes, dans un premier temps, intĂ©ressĂ©s Ă la rĂ©duction de lâempreinte mĂ©moire des modĂšles acoustiques. Notre mĂ©thode Ă base dâanalyse factorielle a dĂ©montrĂ© une capacitĂ© de mutualisation des paramĂštres des modĂšles acoustiques, tout en maintenant des performances similaires Ă celles des modĂšles de base. La modĂ©lisation proposĂ©e nous conduit Ă dĂ©composer lâensemble des paramĂštres des modĂšles acoustiques en sous-ensembles de paramĂštres indĂ©pendants, ce qui permet une grande flexibilitĂ© pour dâĂ©ventuelles adaptations (locuteurs, genre, nouvelles tĂąches).Dans les modĂ©lisations actuelles, un Ă©tat dâun ModĂšle de Markov CachĂ© (MMC) est reprĂ©sentĂ© par un mĂ©lange de Gaussiennes (GMM : Gaussian Mixture Model). Nous proposons, comme alternative, une reprĂ©sentation vectorielle des Ă©tats : les fac- teur dâĂ©tats. Ces facteur dâĂ©tats nous permettent de mesurer efficacement la similaritĂ© entre les Ă©tats des MMC au moyen dâune distance euclidienne, par exemple. GrĂące Ă cette reprĂ©senation vectorielle, nous proposons une mĂ©thode simple et efficace pour la construction de modĂšles acoustiques avec des Ă©tats partagĂ©s. Cette procĂ©dure sâavĂšre encore plus efficace dans le cas de langues peu ou trĂšs peu dotĂ©es en ressouces et enconnaissances linguistiques. Enfin, nos efforts se sont portĂ©s sur la robustesse des systĂšmes de reconnaissance de la parole face aux variabilitĂ©s acoustiques, et plus particuliĂšrement celles gĂ©nĂ©rĂ©es par lâenvironnement. Nous nous sommes intĂ©ressĂ©s, dans nos diffĂ©rentes expĂ©rimentations, Ă la variabilitĂ© locuteur, Ă la variabilitĂ© canal et au bruit additif. GrĂące Ă notre approche sâappuyant sur lâanalyse factorielle, nous avons dĂ©montrĂ© la possibilitĂ© de modĂ©liser ces diffĂ©rents types de variabilitĂ© acoustique nuisible comme une composante additive dans le domaine cepstral. Nous soustrayons cette composante des vecteurs cepstraux pour annuler son effet pĂ©nalisant pour la reconnaissance de la parol
Factor analysis for acoustic modeling of speech recognition systems
Dans cette thĂšse, nous proposons dâutiliser des techniques fondĂ©es sur lâanalyse factorielle pour la modĂ©lisation acoustique pour le traitement automatique de la parole, notamment pour la Reconnaissance Automatique de la parole. Nous nous sommes, dans un premier temps, intĂ©ressĂ©s Ă la rĂ©duction de lâempreinte mĂ©moire des modĂšles acoustiques. Notre mĂ©thode Ă base dâanalyse factorielle a dĂ©montrĂ© une capacitĂ© de mutualisation des paramĂštres des modĂšles acoustiques, tout en maintenant des performances similaires Ă celles des modĂšles de base. La modĂ©lisation proposĂ©e nous conduit Ă dĂ©composer lâensemble des paramĂštres des modĂšles acoustiques en sous-ensembles de paramĂštres indĂ©pendants, ce qui permet une grande flexibilitĂ© pour dâĂ©ventuelles adaptations (locuteurs, genre, nouvelles tĂąches).Dans les modĂ©lisations actuelles, un Ă©tat dâun ModĂšle de Markov CachĂ© (MMC) est reprĂ©sentĂ© par un mĂ©lange de Gaussiennes (GMM : Gaussian Mixture Model). Nous proposons, comme alternative, une reprĂ©sentation vectorielle des Ă©tats : les fac- teur dâĂ©tats. Ces facteur dâĂ©tats nous permettent de mesurer efficacement la similaritĂ© entre les Ă©tats des MMC au moyen dâune distance euclidienne, par exemple. GrĂące Ă cette reprĂ©senation vectorielle, nous proposons une mĂ©thode simple et efficace pour la construction de modĂšles acoustiques avec des Ă©tats partagĂ©s. Cette procĂ©dure sâavĂšre encore plus efficace dans le cas de langues peu ou trĂšs peu dotĂ©es en ressouces et enconnaissances linguistiques. Enfin, nos efforts se sont portĂ©s sur la robustesse des systĂšmes de reconnaissance de la parole face aux variabilitĂ©s acoustiques, et plus particuliĂšrement celles gĂ©nĂ©rĂ©es par lâenvironnement. Nous nous sommes intĂ©ressĂ©s, dans nos diffĂ©rentes expĂ©rimentations, Ă la variabilitĂ© locuteur, Ă la variabilitĂ© canal et au bruit additif. GrĂące Ă notre approche sâappuyant sur lâanalyse factorielle, nous avons dĂ©montrĂ© la possibilitĂ© de modĂ©liser ces diffĂ©rents types de variabilitĂ© acoustique nuisible comme une composante additive dans le domaine cepstral. Nous soustrayons cette composante des vecteurs cepstraux pour annuler son effet pĂ©nalisant pour la reconnaissance de la paroleIn this thesis, we propose to use techniques based on factor analysis to build acoustic models for automatic speech processing, especially Automatic Speech Recognition (ASR). Frstly, we were interested in reducing the footprint memory of acoustic models. Our factor analysis-based method demonstrated that it is possible to pool the parameters of acoustic models and still maintain performance similar to the one obtained with the baseline models. The proposed modeling leads us to deconstruct the ensemble of the acoustic model parameters into independent parameter sub-sets, which allow a great flexibility for particular adaptations (speakers, genre, new tasks etc.). With current modeling techniques, the state of a Hidden Markov Model (HMM) is represented by a combination of Gaussians (GMM : Gaussian Mixture Model). We propose as an alternative a vector representation of states : the factors of states. These factors of states enable us to accurately measure the similarity between the states of the HMM by means of an euclidean distance for example. Using this vector represen- tation, we propose a simple and effective method for building acoustic models with shared states. This procedure is even more effective when applied to under-resourced languages. Finally, we concentrated our efforts on the robustness of the speech recognition sys- tems to acoustic variabilities, particularly those generated by the environment. In our various experiments, we examined speaker variability, channel variability and additive noise. Through our factor analysis-based approach, we demonstrated the possibility of modeling these different types of acoustic variability as an additive component in the cepstral domain. By compensation of this component from the cepstral vectors, we are able to cancel out the harmful effect it has on speech recognitio
Hybrid TOA/AOA Approximate Maximum Likelihood Mobile Localization
This letter deals with a hybrid time-of-arrival/angle-of-arrival (TOA/AOA) approximate maximum likelihood (AML) wireless location algorithm. Thanks to the use of both TOA/AOA measurements, the proposed technique can rely on two base stations (BS) only and achieves better performance compared to the original approximate maximum likelihood (AML) method. The use of two BSs is an important advantage in wireless cellular communication systems because it avoids hearability problems and reduces network signaling burden. Simulation results show that, for certain scenarios, the proposed hybrid TOA/AOA AML with two BSs can outperform the AML with up to six BSs