11 research outputs found

    Moving object detection via TV-L1 optical flow in fall-down videos

    Get PDF
    There is a growing demand for surveillance systems that can detect fall-down events because of the increased number of surveillance cameras being installed in many public indoor and outdoor locations. Fall-down event detection has been vigorously and extensively researched for safety purposes, particularly to monitor elderly peoples, patients, and toddlers. This computer vision detector has become more affordable with the development of high-speed computer networks and low-cost video cameras. This paper proposes moving object detection method based on human motion analysis for human fall-down events. The method comprises of three parts, which are preprocessing part to reduce image noises, motion detection part by using TV-L1 optical flow algorithm, and performance measure part. The last part will analyze the results of the object detection part in term of the bounding boxes, which are compared with the given ground truth. The proposed method is tested on Fall Down Detection (FDD) dataset and compared with Gunnar-Farneback optical flow by measuring intersection over union (IoU) of the output with respect to the ground truth bounding box. The experimental results show that the proposed method achieves an average IoU of 0.92524

    Effects of nanocellulose fiber and thymol on mechanical, thermal, and barrier properties of corn starch films

    Get PDF
    This study explores the preparation of corn starch (CS) films incorporated with nanocellulose fiber (NCF) and different concentrations of thymol (0.1, 0.3, and 0.5% weight of thymol/volume of solution (% w/v)) via the solvent casting method. The resulting films were characterized by the functional chemistry, crystallinity, morphology, mechanical, thermal, and barrier properties. The Fourier transform infrared spectroscopy analysis confirmed the presence of intermolecular hydrogen bonding between the thymol and starch, as well as the thymol and glycerol, via hydroxyl groups of glycerol, starch, and thymol. The film crystallinity decreased with increasing concentration of thymol. The addition of NCF at 1.5% weight of starch increased the tensile strength (TS) and Young's Modulus (YM), but decreased the elongation at break (EAB), oxygen permeability, and water vapor permeability of the CS films. The thermal stability of the CS films was also improved with the addition of NCF. The addition of thymol to the CS/NCF bio-nanocomposite films decreased the TS and YM, respectively but increased the EAB due to the plasticizing effect of thymol. The addition of thymol also improved the thermal stability but reduced the barrier properties of the films. The effects on the mechanical, thermal, and barrier properties were more pronounced at higher concentrations of thymol. In conclusion, the inclusion of both NCF and thymol led to the improvement of the flexibility and thermal stability of the CS films

    Orthopaedic specialty committee exit examination amidst the COVID-19 pandemic in Malaysia- experiences and reflections from the candidates

    Get PDF
    Introduction: The emergence of the COVID-19 pandemic had affected the Orthopaedic Specialty Committee (OSC) Exit Examination candidates. The objective of this study was to evaluate the impact of this pandemic on the candidates’ teaching and learning, mental well-being, and personal experience during the examinations. Methods: A cross-sectional study was conducted from 1st to 31st January 2021. 103 candidates for the OSC Exit Examination November 2020 were asked to answer a questionnaire. Wilcoxon signed-rank tests were used to compare differences in the frequencies before and during the pandemic. A p-value of less than 0.05 was taken as significant. Results: There was a significant reduction in the number of classes (P-value < 0.001) and examination preparatory courses conducted, reduced number and variety of patients attended and limited exposure in the operation theatre. Most candidates had virtual and physical classes, and agreed virtual clinical teaching was less effective. A majority had increased caffeine intake and smoking habits, decreased time spent with family and sports activities and no impact on sleeping hours, alcohol and analgesic usage. During the examinations, most candidates felt disturbed by the COVID-19 safety protocol and worried about the risk of contracting the infections. Conclusion: The effect of this pandemic on the post-graduate Orthopaedics students teaching and learning is massive. Virtual teaching programmes or applications that can replace the traditional clinical teaching methods should be explored and developed for the benefit of our education system

    Symmetrically Stacked Long Short-Term Memory Networks for Fall Event Recognition Using Compact Convolutional Neural Networks-Based Tracker

    No full text
    In recent years, the advancement of pattern recognition algorithms, specifically the deep learning-related techniques, have propelled a tremendous amount of researches in fall event recognition systems. It is important to detect a fall incident as early as possible, whereby a slight delay in providing immediate assistance can cause severe unrecoverable injuries. One of the main challenges in fall event recognition is the imbalanced training data between fall and no-fall events, where a real-life fall incident is a sporadic event that occurs infrequently. Most of the recent techniques produce a lot of false alarms, as it is hard to train them to cover a wide range of fall situations. Hence, this paper aims to detect the exact fall frame in a video sequence, as such it will not be dependent on the whole clip of the video sequence. Our proposed approach consists of a two-stage module where the first stage employs a compact convolutional neural network tracker to generate the object trajectory information. Features of interest will be sampled from the generated trajectory paths, which will be fed as the input to the second stage. The next stage network then models the temporal dependencies of the trajectory information using symmetrical Long Short-Term Memory (LSTM) architecture. This two-stage module is a novel approach as most of the techniques rely on the detection module rather than the tracking module. The simulation experiments were tested using Fall Detection Dataset (FDD). The proposed approach obtains an expected average overlap of 0.167, which is the best performance compared to Multi-Domain Network (MDNET) and Tree-structured Convolutional Neural Network (TCNN) trackers. Furthermore, the proposed 3-layers of stacked LSTM architecture also performs the best compared to the vanilla recurrent neural network and single-layer LSTM. This approach can be further improved if the tracker model is firstly pre-tuned in offline mode with respect to a specific type of object of interest, rather than a general object

    Intelligent Bone Age Assessment: An Automated System to Detect a Bone Growth Problem Using Convolutional Neural Networks with Attention Mechanism

    No full text
    Skeletal bone age assessment using X-ray images is a standard clinical procedure to detect any anomaly in bone growth among kids and babies. The assessed bone age indicates the actual level of growth, whereby a large discrepancy between the assessed and chronological age might point to a growth disorder. Hence, skeletal bone age assessment is used to screen the possibility of growth abnormalities, genetic problems, and endocrine disorders. Usually, the manual screening is assessed through X-ray images of the non-dominant hand using the Greulich–Pyle (GP) or Tanner–Whitehouse (TW) approach. The GP uses a standard hand atlas, which will be the reference point to predict the bone age of a patient, while the TW uses a scoring mechanism to assess the bone age using several regions of interest information. However, both approaches are heavily dependent on individual domain knowledge and expertise, which is prone to high bias in inter and intra-observer results. Hence, an automated bone age assessment system, which is referred to as Attention-Xception Network (AXNet) is proposed to automatically predict the bone age accurately. The proposed AXNet consists of two parts, which are image normalization and bone age regression modules. The image normalization module will transform each X-ray image into a standardized form so that the regressor network can be trained using better input images. This module will first extract the hand region from the background, which is then rotated to an upright position using the angle calculated from the four key-points of interest. Then, the masked and rotated hand image will be aligned such that it will be positioned in the middle of the image. Both of the masked and rotated images will be obtained through existing state-of-the-art deep learning methods. The last module will then predict the bone age through the Attention-Xception network that incorporates multiple layers of spatial-attention mechanism to emphasize the important features for more accurate bone age prediction. From the experimental results, the proposed AXNet achieves the lowest mean absolute error and mean squared error of 7.699 months and 108.869 months2, respectively. Therefore, the proposed AXNet has demonstrated its potential for practical clinical use with an error of less than one year to assist the experts or radiologists in evaluating the bone age objectively

    Abstracts of the International Halal Science Conference 2023

    No full text
    This book presents the extended abstracts of the selected contributions to the International Halal Science Conference, held on 22-23 August 2023 by the International Institute for Halal Research and Training (INHART), IIUM, Malaysia in collaboration with Halalan Thayyiban Research Centre, University Islam Sultan Sharif (UNISSA), Brunei Darussalam. With the increasing global interest in halal products and services, this conference is timely. Conference Title:  International Halal Science ConferenceConference Acronym: IHASC23Conference Theme: Halal Industry Sustainability Through ScienceConference Date: 22-23 August 2023Conference Venue: International Islamic University (IIUM), MalaysiaConference Organizer: International Institute for Halal Research and Training (INHART), International Islamic University (IIUM), Malaysi

    Prospective observational cohort study on grading the severity of postoperative complications in global surgery research

    Get PDF
    Background The Clavien–Dindo classification is perhaps the most widely used approach for reporting postoperative complications in clinical trials. This system classifies complication severity by the treatment provided. However, it is unclear whether the Clavien–Dindo system can be used internationally in studies across differing healthcare systems in high- (HICs) and low- and middle-income countries (LMICs). Methods This was a secondary analysis of the International Surgical Outcomes Study (ISOS), a prospective observational cohort study of elective surgery in adults. Data collection occurred over a 7-day period. Severity of complications was graded using Clavien–Dindo and the simpler ISOS grading (mild, moderate or severe, based on guided investigator judgement). Severity grading was compared using the intraclass correlation coefficient (ICC). Data are presented as frequencies and ICC values (with 95 per cent c.i.). The analysis was stratified by income status of the country, comparing HICs with LMICs. Results A total of 44 814 patients were recruited from 474 hospitals in 27 countries (19 HICs and 8 LMICs). Some 7508 patients (16·8 per cent) experienced at least one postoperative complication, equivalent to 11 664 complications in total. Using the ISOS classification, 5504 of 11 664 complications (47·2 per cent) were graded as mild, 4244 (36·4 per cent) as moderate and 1916 (16·4 per cent) as severe. Using Clavien–Dindo, 6781 of 11 664 complications (58·1 per cent) were graded as I or II, 1740 (14·9 per cent) as III, 2408 (20·6 per cent) as IV and 735 (6·3 per cent) as V. Agreement between classification systems was poor overall (ICC 0·41, 95 per cent c.i. 0·20 to 0·55), and in LMICs (ICC 0·23, 0·05 to 0·38) and HICs (ICC 0·46, 0·25 to 0·59). Conclusion Caution is recommended when using a treatment approach to grade complications in global surgery studies, as this may introduce bias unintentionally

    The surgical safety checklist and patient outcomes after surgery: a prospective observational cohort study, systematic review and meta-analysis

    Get PDF
    © 2017 British Journal of Anaesthesia Background: The surgical safety checklist is widely used to improve the quality of perioperative care. However, clinicians continue to debate the clinical effectiveness of this tool. Methods: Prospective analysis of data from the International Surgical Outcomes Study (ISOS), an international observational study of elective in-patient surgery, accompanied by a systematic review and meta-analysis of published literature. The exposure was surgical safety checklist use. The primary outcome was in-hospital mortality and the secondary outcome was postoperative complications. In the ISOS cohort, a multivariable multi-level generalized linear model was used to test associations. To further contextualise these findings, we included the results from the ISOS cohort in a meta-analysis. Results are reported as odds ratios (OR) with 95% confidence intervals. Results: We included 44 814 patients from 497 hospitals in 27 countries in the ISOS analysis. There were 40 245 (89.8%) patients exposed to the checklist, whilst 7508 (16.8%) sustained ≥1 postoperative complications and 207 (0.5%) died before hospital discharge. Checklist exposure was associated with reduced mortality [odds ratio (OR) 0.49 (0.32–0.77); P\u3c0.01], but no difference in complication rates [OR 1.02 (0.88–1.19); P=0.75]. In a systematic review, we screened 3732 records and identified 11 eligible studies of 453 292 patients including the ISOS cohort. Checklist exposure was associated with both reduced postoperative mortality [OR 0.75 (0.62–0.92); P\u3c0.01; I2=87%] and reduced complication rates [OR 0.73 (0.61–0.88); P\u3c0.01; I2=89%). Conclusions: Patients exposed to a surgical safety checklist experience better postoperative outcomes, but this could simply reflect wider quality of care in hospitals where checklist use is routine
    corecore