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 There is a growing demand for surveillance systems that can detect fall-down 

events because of the increased number of surveillance cameras being 

installed in many public indoor and outdoor locations. Fall-down event 

detection has been vigorously and extensively researched for safety purposes, 

particularly to monitor elderly peoples, patients, and toddlers. This computer 

vision detector has become more affordable with the development of high-

speed computer networks and low-cost video cameras. This paper proposes 

moving object detection method based on human motion analysis for human 

fall-down events. The method comprises of three parts, which are 

preprocessing part to reduce image noises, motion detection part by using 

TV-L1 optical flow algorithm, and performance measure part. The last part 

will analyze the results of the object detection part in term of the bounding 

boxes, which are compared with the given ground truth. The proposed 

method is tested on Fall Down Detection (FDD) dataset and compared with 

Gunnar-Farneback optical flow by measuring intersection over union (IoU) 

of the output with respect to the ground truth bounding box. 

The experimental results show that the proposed method achieves an average 

IoU of 0.92524.  
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1. INTRODUCTION 

Object detection is one of the research topics in computer vision which detects the presence of 

objects of interest and locates their positions. The main task of object detection method is to segment any 

moving objects from the background [1]. Thus, the segmented object of the interests is then labeled as 

‘foreground’ and the rest of the pixels are labeled as ‘background’. With the advancement of image and video 

fields, many automatic complex systems can be designed with the help of the high-resolution cameras and 

high-speed computer networks. Hence, the role of automatic detection algorithm has become more important, 

especially for the applications that focus on in daily life such as behavioral analysis [2-3], urban surveillance 

[4-5], and object recognition [6-8]. 

Whilst, a human fall-down event is defined as an incident in which the body of the person of interest 

halts or rests unintentionally laying on the ground or any other lower surfaces [9]. A fall-down event also 

takes place when a person slips unexpectedly while walking or standing. The World Health Organization 

(WHO) [10] has also reported that fall-down event is a major public health concern, which is the second 

leading cause of unintentional injury death after road accident worldwide. In addition, WHO also reported 

that an estimated of 646 000 individuals died globally each year because of fall-down event related incidents. 

Figure 1 shows some samples of fall-down events for various fall postures. 
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Figure 1. Image samples of fall-down events 

 

Therefore, automatic fall-down event sensor is very crucial for the applications in hospitals, elderly 

houses, and other public places. Early detection of the event is crucial to reduce the “long lie” situation which 

is the time period where a subject remains lying on the floor after the fall incident. It is the key factor that 

determines the health impact severity of a fall-down event. Clinical studies also have shown that a long lie 

case usually leads to dehydration, hypothermia and pressure sores [11, 12]. In addition, it might also lead to 

psychological consequences such as loss of independence ability, fear f falling and trauma [13]. 

The proposed work is based on a vision approach that does not require too much complex 

processing of the videos. The basis of fall detector is TV-L1 optical flow algorithm. The main motivation 

behind this work is due to the fact that there is a relatively large number of peoples who die owing to the late 

awareness and treatment of fall-down event after the incidents have occurred. Hence, an automatic and 

efficient system based on motion analysis is much needed to mitigate this problem. This paper is organized as 

follows: Section 2 discusses related works on object detection in fall-down events. Section 3 explains the 

proposed method of object detection, Section 4 shows the experimental results and performance comparison, 

and a conclusion is provided in Section 5. 

 

 

2. RELATED WORK 

Object detection techniques for fall-down events have become a big subtopic under computer vision 

and image processing field. Generally, these techniques are tremendously explored because of its less 

intrusive behavior as well as robust and easy to be implemented in various environments. In addition, a vast 

amount of information can also be extracted concurrently from the surveillance cameras such as motions, 

locations or actions of the monitored person of interest [14]. Typically, object detection methods in the fall-

down event can be divided into two approaches; background subtraction and optical flow. 

 

2.1. Background subtraction 

Background subtraction is the most frequently used method in fall-down event detection that finds 

the differences between the established background model and the current image so that the foreground 

object can be segregated from background. It is used mainly for static cameras set up. Basically, background 

subtraction techniques provide fast computation algorithm with good accuracy. Poonsri & Chiracharit [15] 

used a mixture of Gaussian model (MoG), which is a statistical approach to extract the foreground objects. 

Then, they merged the results of MoG method with the mean filter. They also implemented some 

morphological operations to remove the noise to improve foreground detection accuracy. However, MOG is 

sensitive to detect all the moving objects which usually lead to false foreground detection.  

Yu et al. [16, 17] applied background subtraction method using codebook algorithm to extract the 

foreground silhouette for a single camera system. They argued that codebook algorithm can achieve better 

performance by utilizing more comprehensive information from the color space. They also stated that their 

approach is capable to cope with illumination changes and adaptive parametric variation since no assumption 

is made as compared to other background methods such as MoG and single-mode background subtraction 

method in [18, 19]. 

Wang et al. [20] implemented background subtraction VIBE+ method to extract the foreground 

object. Then, they performed connected component analysis to combine and label the components as the 

foreground. Besides that, Yun et al. [21] performed background subtraction method using Gaussian Mixture 
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Models (GMM) to depth images instead of RGB images. The foreground is extracted such that the mixture 

models can determine the most probable pixel’s class by modelling the intensity values. They further 

implemented a series of morphological operations to remove the noise to obtain a clean silhouette of the 

foreground object. 

 

2.2. Optical flow 

Optical flow [22] is defined as the movement pattern of the object’s motion contained in a video. 

The motions which are usually represented by velocity are estimated based on similar points of the two 

consecutive frames. Optical flow can give complete movement information of the whole frame and suitable 

to be implemented as a moving object detector. Bhandari et al. [23] used Lukas-Kanade optical flow for the 

motion estimation of the foreground. Their algorithm first finds points of interest using Shi-Tomasi method 

applied to the output of Harris-Stephens corner detection with several threshold parameters. The points of 

interest are kept if the flow of any respective points is matched with a corner point and their distance 

difference is less than a small number. Otherwise, the points will be discarded. The same process is repeated 

until the end of a video.  

Paper in [21] utilized Horn-Schunk and Lucas-Kanade optical flow methods to detect foreground 

objects motions in RGB depth videos. Then, they extracted histogram-based features of the optical flow. This 

histogram is a useful measure to describe motions of the foreground pixels, which later used to classify the 

fall-down event. 

Belshaw et al. [24] applied Farneback optical flow to represent motion of the foreground blob 

between consecutive video frames. Optical flow is also incorporated into background adaptation approach so 

that background model can be updated to cater multiple active region blobs. Specifically, magnitude of the 

optical flows is used to control background adaptation rates. This method is devised based on assumption that 

motion cues can be used to remove stationary blobs as well as to identify lighting changes. 

Alaoui et al. [25] proposed a combination method between Farneback optical flow algorithm with 

Von Mises distribution to determine and identify the moving object. Background subtraction and 

morphological operations are performed first before extracting the foreground pixels. Then, optical flow is 

used to calculate motion vectors of the foreground object. Later, Von Mises distribution is implemented to 

calculate the mean direction of the vectors. Apart from foreground extraction, the proposed method is able to 

determine the orientation vectors of the object before and after the event. 

 

 

3. RESEARCH METHOD 

Figure 2 shows flowchart of the proposed framework of moving object detection that comprising of 

three stages; preprocessing, object detection and performance measure. The proposed method utilizes optical 

flow approach to detect the moving object, in which a single person in the case of walk and fall videos.  

 

 

 
 

Figure 2. Flowchart of the proposed framework 

 

 

3.1. Preprocessing 

The preprocessing part focuses on producing better input image to the moving detection part. Image 

filtering using 5 × 5 averaging filter as in (1) is implemented to smooth out the noise in the input videos. The 

underlying assumption used is any raw input videos are not suitable to be directly processed because of the 

noisy pixels and illumination variations that present in the video. Therefore, some preprocessing techniques 

need to be performed first to reduce the effect of the previously mentioned issues. Then, each video frame is 

cropped to obtain region that consists only the moving objects. 
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3.2. Object detection 

Optical flow is one of the moving object detection methods which approximate the apparent motion 

of the pixel’s brightness between two consecutive frames. Optical flow can also be used to represent the 

velocity of the pixels. The TV-L1 optical flow [26] is implemented in this work to determine and detect the 

moving object based on OpenCV implementation. The TV-L1 optical flow is chosen due to better 

performance under various lighting conditions compared to other optical flow algorithms [13]. It is also a fast 

computation algorithm with comparable accuracy and ability to deal with occluded areas so that flow 

distortion can be prevented [27].  

In general, TV-L1 optical flow is one of the variational methods for the optical flow estimation and 

it has become more popular and extensively researched because of its robustness and accuracy. Basically, the 

underlying idea of this optical flow is the brightness between two images remains similar under motion and 

sometimes coined as brightness constancy assumption [28]. Thus, TV-L1 optical flow is defined as a 

combination of the brightness and gradient constancy assumptions but with varying the weight under the 

Chambolle function in the regularization term [29] with respect to classical Horn-Schunk approach [30]. 

Moreover, the previous studies have shown that the combination between both brightness and gradient have 

led to a robust flow estimation under various illumination changes [31] and image noises. The average 

magnitude of optical flow vector is computed in each video frame to infer the predicted bounding box. These 

boxes are then used in the next module for the performance measure purpose of identifying the  

fall-down event. 

Let 𝐮 = {𝑢, 𝑣} be the displacement field at pixel coordinate 𝐱 = {𝑥, 𝑦}. The optical flow can be 

written in the non-linear formulation as (2) with 𝐼𝑖 and 𝐼𝑖+1 are the current and future frames, respectively. 

The equation can be linearized using Taylor expansion as in (3) with 𝐮𝟎 as an approximation to 𝐮.  

            

𝐼𝑖+1(𝐱 + 𝐮) − 𝐼𝑖(𝐱) = 0 (2) 

 

 

𝜌(𝐮) = ∇𝐼𝑖+1(𝐱 + 𝐮𝟎). (𝐮 − 𝐮𝟎) − 𝐼𝑖+1(𝐱 + 𝐮𝟎) − 𝐼𝑖(𝐱) (3) 

 

(3) assumes that pixel intensities are constant over time which is not practical in the real-life scenario. Thus, 

this equation can be modeled with an additional function 𝜔 with weight 𝛾 as in (4).  

 

𝜌(𝐮) = (∇𝐼𝑖+1)
𝑇(𝐮 − 𝐮𝟎) + 𝐼𝑡 + 𝛾𝜔 (4) 

 

The L1 penalization for both regularization and data term can be optimized by minimizing the 

energy function as in (5), where λ is the trade-off between regularization and data term. However, (5) is not 

trivial to be solved as an optimization problem. Thus, (6) is used to solve the problem by introducing the 

convex relaxation term with p is another auxiliary variable as u and 𝜃 is a constant, in which the goals is to 

minimize the mentioned energy function. 

 

𝐸 = 𝑚𝑖𝑛(𝑢,𝑣) {𝜆 ∫ ‖𝜌(𝑢, 𝑣)‖1 + ∫ ‖𝑢‖1 + ‖𝑣‖1ΩΩ
} (5) 

 

𝐸 = 𝑚𝑖𝑛(𝒖,𝒑) {𝜆 ∫ 𝜌(𝒑) + ∫ ‖𝑢‖ + ‖𝑣‖ +
1

2𝜃
‖𝒖 − 𝒑‖2

ΩΩ
} (6) 

 

3.3. Performance measure 

The ground truth localization of the moving object in each frame is annotated manually by using a 

bounding box that surrounds the object. These boxes are then used to evaluate the Intersection over Union 

(IoU) between the ground truth boxes and the output boxes of the proposed method. The IoU or also known 

as the Jaccard index is defined in (7) and illustrated in Figure 3. 

 

IoU =  
Area of overlap

Area of union
=

|A∩B|

|A|+|B|−|A∩B|
 (7) 
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Figure 3. Illustration of the intersection over union (IoU) 

 

 

4. RESULTS AND ANALYSIS 

The proposed framework is tested using Fall Detection Dataset (FDD) [32], which is an online fall-

down database that comprises a total of 126 annotated videos. These videos contain four different stages with 

nine different persons acting the fall incident. The frame rate is 25 frames/sec with a frame size of  

320 × 240 pixels. The proposed framework is also employed using Python 3.6 on Intel Core i7 3.4 GHz 12 

GB RAM desktop computer.  

Figure 4 shows the sample results of the proposed method using FDD database. The performance of 

the proposed method is compared with the Gunnar-Farneback optical flow [33], which is another type of 

dense optical flow. Figure 4(a) shows the sequential frames of the FDD, while Figure 4 (b) and Figure 4 (c) 

show the corresponding optical flow images of the TV-L1 and Gunnar-Farneback optical flow. 

 

 

 
 

(a) 

 

 
 

(b) 

 

 
 

(c) 

 

Figure 4. (a) Samples of sequential frames of Fall Detection Dataset, (b) Corresponding optical flow images 

of TV-L1 algorithm, (c) Corresponding optical flow images of Gunnar-Farneback algorithm 

 

 

Figure 5 and 6 show the graphs of the average flow magnitude of the TV-L1 and Gunnar-Farneback 

algorithms for all sequential frames in Figure 4.  From the graphs, the Gunnar-Farneback optical flow method 

produces higher average magnitude compared to TV-L1 optical flow. This is because Gunnar-Farneback 

cannot cope well with the noise as it considers them as moving pixels and thus higher moving magnitude. 
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Figure 5. Average flow magnitude of TV-L1 optical flow for all sequential frames in Figure 4 

 

 

 
 

Figure 6. Average flow magnitude of Gunnar-Farneback optical flow for all sequential frames in Figure 4 

 

 

The IoU test is then performed on both outputs of the optical flow algorithms. The illustration of the 

IoU is shown in Figure 7 with green bounding box is the ground truth of the FDD and the red bounding box 

is the optical flow output bounding box. Table 1 lists the computation IoU results for both TV-L1 and 

Gunnar-Farneback optical flow for 14 videos. In average, the IoU of TV-L1 optical flow is higher compared 

to Gunnar-Farneback method with an average of 0.92524 compared to 0.92346. However, Gunnar-Farneback 

method produces higher IoU results for Video 3, 8 and 9 because of the low noise videos. Even though the 

IoU differences are not too big, it still gives a big impact for fall-down detection, especially during the 

transition period between just before and after the fall-down incident. 

 

 

 
 

Figure 7. The illustration of IoU 

Table 1. IoU results for TV-L1 and Gunnar-Farneback optical flow 

#Video 
Intersection over union (IoU 

TV-L1 Gunnar-Farneback 

1 0.92227 0.92189 

2 0.91823 0.91685 

3 0.91786 0.91998 

4 0.91289 0.91086 

5 0.91776 0.91516 

6 0.94445 0.93651 

7 0.92682 0.92467 

8 0.93954 0.94199 

9 0.93460 0.93694 

10 0.91080 0.90927 

11 0.93145 0.92838 

12 0.92236 0.91979 

13 0.94605 0.93929 

14 0.90834 0.90697 

Average 0.92524 0.92346 
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5. CONCLUSION 

In conclusion, a moving object detection using TV-L1 optical flow for fall-down videos has been 

proposed and tested. The proposed framework starts with the preprocessing step followed by the computation 

of the optical flow algorithm which is TV-L1 optical flow. The average flow magnitude is then computed for 

each frame to obtain the output bounding box. Then, this box is compared with the ground truth data using 

IoU test. The performance of the proposed method is benchmarked with the Gunnar-Farneback optical flow. 

Based on the experimental results, TV-L1 optical flow achieved an average IoU with 0.92524 which 

outperforms the Gunnar-Farneback optical flow. For future work, the detector can be further by using 

additional features such as titled angle, middle-points, and motion speed. 
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