25 research outputs found
Evolution of an endofungal Lifestyle: Deductions from the Burkholderia rhizoxinica Genome
<p>Abstract</p> <p>Background</p> <p><it>Burkholderia rhizoxinica </it>is an intracellular symbiont of the phytopathogenic zygomycete <it>Rhizopus microsporus</it>, the causative agent of rice seedling blight. The endosymbiont produces the antimitotic macrolide rhizoxin for its host. It is vertically transmitted within vegetative spores and is essential for spore formation of the fungus. To shed light on the evolution and genetic potential of this model organism, we analysed the whole genome of <it>B. rhizoxinica </it>HKI 0454 - a type strain of endofungal <it>Burkholderia </it>species.</p> <p>Results</p> <p>The genome consists of a structurally conserved chromosome and two plasmids. Compared to free-living <it>Burkholderia </it>species, the genome is smaller in size and harbors less transcriptional regulator genes. Instead, we observed accumulation of transposons over the genome. Prediction of primary metabolic pathways and transporters suggests that endosymbionts consume host metabolites like citrate, but might deliver some amino acids and cofactors to the host. The rhizoxin biosynthesis gene cluster shows evolutionary traces of horizontal gene transfer. Furthermore, we analysed gene clusters coding for nonribosomal peptide synthetases (NRPS). Notably, <it>B. rhizoxinica </it>lacks common genes which are dedicated to quorum sensing systems, but is equipped with a large number of virulence-related factors and putative type III effectors.</p> <p>Conclusions</p> <p><it>B. rhizoxinica </it>is the first endofungal bacterium, whose genome has been sequenced. Here, we present models of evolution, metabolism and tools for host-symbiont interaction of the endofungal bacterium deduced from whole genome analyses. Genome size and structure suggest that <it>B. rhizoxinica </it>is in an early phase of adaptation to the intracellular lifestyle (genome in transition). By analysis of tranporters and metabolic pathways we predict how metabolites might be exchanged between the symbiont and its host. Gene clusters for biosynthesis of secondary metabolites represent novel targets for genomic mining of cryptic natural products. <it>In silico </it>analyses of virulence-associated genes, secreted proteins and effectors might inspire future studies on molecular mechanisms underlying bacterial-fungal interaction.</p
The sigma1 receptor interacts with N-alkyl amines and endogenous sphingolipids
The sigma1 receptor is distinguished for its ability to bind various pharmacological agents including drugs of abuse such as cocaine and methamphetamine. Some endogenous ligands have been identified as putative sigma1 receptor regulators. High affinity ligands for the sigma1 receptor contain a nitrogen atom connected to long alkyl chains. We found that long alkyl chain primary amines including endogenous amines belonging to the sphingolipid family such as d-erythro-sphingosine and sphinganine bind with considerable affinity to the sigma1 receptor but not to the sigma2 receptor. The binding of d-erythro-sphingosine to the sigma1 receptor appears to be competitive in nature as assessed against the radioligand [3H]-(+)-pentazocine. Interestingly, the well studied sphingolipid mediator sphingosine-1 phosphate did not bind to the sigma1 or the sigma2 receptor. Sphingosine is converted to sphingosine-1 phosphate by a family of sphingosine kinases that regulate the relative levels of these two bioactive lipids in the cell. The selective binding of sphingosine but not sphingosine-1 phosphate to the sigma1 receptor suggests a mechanism for regulation of sigma1 receptor activity by the sphingosine kinase. We have successfully reconstituted this hypothetical model in HEK-293 cells overexpressing both the sigma1 receptor and sphingosine kinase-1. The data presented here strongly supports sphingosine as an endogenous modulator of the sigma1 receptor