841 research outputs found
Development of novel monoclonal antibodies against CD109 overexpressed in human pancreatic cancer.
Pancreatic cancer is one of the most aggressive and lethal types of cancer, and more effective therapeutic agents are urgently needed. Overexpressed cell surface antigens are ideal targets for therapy with monoclonal antibody (mAb)-based drugs, but none have been approved for the treatment of pancreatic cancer. Here, we report development of two novel mouse mAbs, KU42.33C and KU43.13A, against the human pancreatic cancer cell line BxPC-3. Using ELISA, flow cytometry, competitive assay and immunoprecipitation followed by mass spectrometry, we discovered that these two mAbs target two distinct epitopes on the external domain of CD109 that are overexpressed by varying amounts in human pancreatic cancer cell lines. Treatment with these two naked antibodies alone did not affect tumour cell growth or migration in vitro. Of the two mAbs, only KU42.33C was useful in determining the expression of CD109 in tumour cells by Western blot and immunohistochemistry. Interestingly, immunohistochemistry of human pancreatic carcinoma tissue arrays with mAb KU42.33C showed that 94% of the 65 human pancreatic adenocarcinoma cases were CD109 positive, with no expression in normal pancreatic tissues. Our results suggest that these two novel mAbs are excellent tools for determining the expression level of CD109 in the tumour specimens and sera of patients with a wide range of cancers, in particular pancreatic cancer, and for investigating its diagnostic, prognostic and predictive value. Further research is warranted and should aim to unravel the therapeutic potential of the humanised forms or conjugated versions of such antibodies in patients whose tumours overexpress CD109 antigen
Development and application of two novel monoclonal antibodies against overexpressed CD26 and integrin α3 in human pancreatic cancer.
Monoclonal antibody (mAb) technology is an excellent tool for the discovery of overexpressed cell surface tumour antigens and the development of targeting agents. Here, we report the development of two novel mAbs against CFPAC-1 human pancreatic cancer cells. Using ELISA, flow cytometry, immunoprecipitation, mass spectrometry, Western blot and immunohistochemistry, we found that the target antigens recognised by the two novel mAbs KU44.22B and KU44.13A, are integrin α3 and CD26 respectively, with high levels of expression in human pancreatic and other cancer cell lines and human pancreatic cancer tissue microarrays. Treatment with naked anti-CD26 mAb KU44.13A did not have any effect on the growth and migration of cancer cells nor did it induce receptor downregulation. In contrast, treatment with anti-integrin α3 mAb KU44.22B inhibited growth in vitro of Capan-2 cells, increased migration of BxPC-3 and CFPAC-1 cells and induced antibody internalisation. Both novel mAbs are capable of detecting their target antigens by immunohistochemistry but not by Western blot. These antibodies are excellent tools for studying the role of integrin α3 and CD26 in the complex biology of pancreatic cancer, their prognostic and predictive values and the therapeutic potential of their humanised and/or conjugated versions in patients whose tumours overexpress integrin α3 or CD26
Acquired resistance of pancreatic cancer cells to treatment with gemcitabine and HER-inhibitors is accompanied by increased sensitivity to STAT3 inhibition
Drug-resistance is a major contributing factor for the poor prognosis in patients with pancreatic cancer. We have shown previously that the irreversible ErbB family blocker afatinib, is more effective than the reversible EGFR tyrosine kinase inhibitor erlotinib in inhibiting the growth of human pancreatic cancer cells. The aim of this study was to develop human pancreatic cancer cell (BxPc3) variants with acquired resistance to treatment with gemcitabine, afatinib, or erlotinib, and to investigate the molecular changes that accompany the acquisition of a drug-resistant phenotype. We also investigated the therapeutic potential of various agents in the treatment of such drug-resistant variants. Three variant forms of BxPc3 cells with acquired resistance to gemcitabine (BxPc3GEM), afatinib (BxPc3AFR) or erlotinib (BxPc3OSIR) were developed following treatment with increasing doses of such drugs. The expression level, mutational and phosphorylation status of various growth factor receptors and downstream cell signaling molecules were determined by FACS, human phopsho-RTK array, and western blot analysis while the sulforhodamine B assay was used for determining the effect of various agents on the growth of such tumours. We found that all three BxPc3 variants with acquired resistance to gemcitabine (BxPc3GEM), afatinib (BxPc3AFR) or erlotinib (BxPc3OSIR) also become less sensitive to treatment with the two other agents. Acquisition of resistance to these agents was accompanied by upregulation of p-c-MET, p-STAT3, CD44, increased autocrine production of EGFR ligand amphiregulin and differential activation status of EGFR tyrosine residues as well as downregulation of total and p-SRC. Of all therapeutic interventions examined, including the addition of an anti-EGFR antibody ICR62, an anti-CD44 monoclonal antibody, and of STAT3 or c-MET inhibitors, only treatment with the STAT3 inhibitor Stattic produced a higher growth inhibitory effect in all three drug-resistant variants. In addition, treatment with a combination of afatinib with either c-MET inhibitor Crizotinib or Stattic resulted in an additive or synergistic growth inhibition in all three variants. Our results suggest that activation of STAT3 may play an important role in the acquisition of resistance to gemcitabine and HER inhibitors in pancreatic cancer and warrant further studies on the therapeutic potential of STAT3 inhibitors in such a setting
Acquired resistance to anti-EGFR mAb ICR62 in cancer cells is accompanied by an increased EGFR expression, HER-2/HER-3 signalling and sensitivity to pan HER blockers
Our results provide a novel mechanistic insight into the development of acquired resistance to EGFR antibody-based therapy in colorectal cancer cells and justify further investigations on the therapeutic benefits of pan-HER family inhibitors in the treatment of colorectal cancer patients once acquired resistance to EGFR antibody-based therapy is developed
Immunomodulatory effects of heat killed 'Mycobacterium obuense' on human blood dendritic cells
Heat-killed (HK) Mycobacterium obuense is a novel immunomodulator, currently undergoing clinical evaluation as an immunotherapeutic agent in the treatment of cancer. Here, we examined the effect of in vitro exposure to HK M. obuense on the expression of different categories of surface receptors on human blood myeloid (m) and plasmacytoid (p) DCs. Moreover, we have characterized the cytokine and chemokine secretion patterns of purified total blood DCs stimulated with HK M. obuense. HK M. obuense significantly up-regulated the expression of CD11c, CD80, CD83, CD86, CD274 and MHC class II in whole-blood mDCs and CD80, CD123 and MHC class II in whole-blood pDCs. Down-regulation of CD195 expression in both DC subpopulations was also noted. Further analysis showed that HK M. obuense up-regulated the expression of CD80, CD83 and MHC class II on purified blood DC subpopulations. TLR2 and TLR1 were also identified to be engaged in mediating the HK M. obuense-induced up-regulation of surface receptor expression on whole blood mDCs. In addition, our data demonstrated that HK M. obuense augmented the secretion of CCL4, CCL5, CCL22, CXCL8, IL-6, IL-12p40 and TNF-α by purified total blood DCs. Taken together, our data suggest that HK M. obuense exerts potent differential immunomodulatory effects on human DC subpopulations. </jats:p
Impact of the putative cancer stem cell markers and growth factor receptor expression on the sensitivity of ovarian cancer cells to treatment with various forms of the HER inhibitors and cytotoxic drugs
Increased expression and activation of human epidermal growth factor receptor (EGFR) and HER-2 have been reported in numerous cancers. The aim of this study was to determine the sensitivity of a large panel of human ovarian cancer cell lines (OCCLs) to treatment with various forms of small molecule tyrosine kinase inhibitors (TKIs) and cytotoxic drugs. The aim was to see if there was any association between the protein expression of various biomarkers including three putative ovarian cancer stem cell (CSC) markers (CD24, CD44, CD117/c-Kit), P-glycoprotein (P-gp), and HER family members and response to treatment with these agents. The sensitivity of 10 ovarian tumour cell lines to the treatment with various forms of HER TKIs (gefitinib, erlotinib, lapatinib, sapitinib, afatinib, canertinib, neratinib), as well as other TKIs (dasatinib, imatinib, NVP-AEW541, crizotinib) and cytotoxic agents (paclitaxel, cisplatin and doxorubicin), as single agents or in combination, was determined by SRB assay. The effect on these agents on the cell cycle distribution, and downstream signaling molecules and tumour migration were determined using flow cytometry, western blotting, and the IncuCyte Clear View cell migration assay respectively. Of the HER inhibitors, the irreversible pan-TKIs (canertinib, neratinib and afatinib) were the most effective TKIs for inhibiting the growth of all ovarian cancer cells, and for blocking the phosphorylation of EGFR, HER-2, AKT and MAPK in SKOV3 cells. Interestingly, while the majority of cancer cells were highly sensitive to treatment with dasatinib, they were relatively resistant to treatment with imatinib (i.e., IC50 >10 µM). Of the cytotoxic agents, paclitaxel was the most effective for inhibiting the growth of OCCLs, and of various combinations of these drugs, only treatment with a combination of NVP-AEW541 and paclitaxel produced a synergistic or additive anti-proliferative effect in all three cell lines examined (i.e., SKOV3, Caov3, ES2). Finally, of the TKIs, only treatment with afatinib, neratinib and dasatinib were able to reduce the migration of HER-2 overexpressing SKOV3 cells. We did not find any significant association between the expression of putative ovarian CSC marker, HER family members, c-MET, ALK, and IGF-IR and the response to the irreversible HER TKIs. Our results support the need for further investigations of the therapeutic potential of these irreversible HER family blockers in ovarian cancer, and the therapeutic potential of dasatinib when used in combination with the inhibitors of the HER family members in ovarian cancer
The impact of co-expression of wild-type EGFR and its ligands determined by immunohistochemistry for response to treatment with cetuximab in patients with metastatic colorectal cancer
Anti-EGFR mAbs cetuximab and panitumumab are routinely used for the treatment of patients with KRAS-wild type metastatic colorectal cancer (mCRC). However, in some patients their efficacy remains modest and with no clear association between the EGFR protein expression determined by PharmDx™ kit, and response to anti-EGFR therapies. Therefore, we investigated the relative expression and predictive value of wild-type EGFR (wtEGFR), mutated EGFRvIII and EGFR ligand proteins in mCRC patients treated with cetuximab. The expression levels of wtEGFR, EGFRvIII, and EGFR ligand were determined by immunohistochemistry (IHC) in 60 tumour specimens using specific antibodies. Sections were scored according to the percentage of positive tumour cells, intensity and cellular location of staining, and these were associated with response, overall survival (OS) and progression-free survival (PFS). At cut-off value > 5%, wtEGFR, and EGFRvIII were present in 44%, and 41%, betacellulin (BTC) in 72%, followed by epigen (67%), TGFα (58%), amphiregulin (34%), EGF (31%) of the cases, respectively and 96% of the wtEGFR positive cases had co-expression of at least one ligand. We found a significant association between the expression of wtEGFR and poor response to cetuximab. In addition, the co-expression of wtEGFR with one ligand at a cut-off value of > 5% and > 10% was associated with worse response to cetuximab (P = 0.021, and P = 0.005 respectively). We found a 3-fold and 5-fold increased risk of shorter OS with expression of BTC and epigen. Interestingly, the expression of wtEGFR and its co-expression with one or two ligands was associated with shorter PFS but not with OS. The relative expression of wtEGFR and its competing ligands, which is the target for therapeutic interventions with anti-EGFR antibodies, could serve as a more reliable predictive biomarker of response to therapy with anti-EGFR mAbs in mCRC patients and warrants further investigation in large prospective studies
Defining genome-wide expression and phenotypic contextual cues in macrophages generated by GM-CSF, M-CSF and heat-killed mycobacteria
Heat-killed (HK) Mycobacterium obuense (NCTC13365) is currently being evaluated in the clinic as an immunotherapeutic agent for cancer treatment. Yet, the molecular underpinnings underlying immunomodulatory properties of HK M. obuense are still largely undefined. To fill this void, we sought to perform immunophenotyping, chemokine/cytokine release analysis and genome-wide characterization of monocyte-derived macrophages (MDM) in which monocytes were originally isolated from healthy donors and differentiated by HK M. obuense (Mob-MDM) relative to macrophage colony-stimulating factor (M-MDM) and granulocyte/macrophage colony-stimulating factor (GM-MDM). Immunophenotyping and cytokine release analysis revealed downregulated surface expression of CD36, decreased spontaneous release of CCL2 and increased spontaneous secretion of CCL5, CXCL8/IL-8, IL-6, and TNF-α in Mob-MDM relative to M-MDM and GM-MDM. Analysis of cytostatic activity showed that Mob-MDM exhibited similar growth inhibitory effects on immortalized and malignant epithelial cells compared with GM-MDM but at an elevated rate relative to M-MDM. To understand global cues in Mob-MDM, we performed comparative RNA-sequencing (RNA-Seq) analysis of Mob-MDM relative to GM-MDM and M-MDM (n = 4 donors). Clustering analysis underscored expression profiles (n = 256) that were significantly modulated in Mob-MDM versus both M-MDM and GM-MDM including, among others, chemokines/cytokines and their receptors, enzymes and transcriptions factors. Topological functional analysis of these profiles identified pathways and gene sets linked to Mob-MDM phenotype including nitric oxide production, acute phase response signaling and microbe recognition pathways as well as signaling cues mediated by the proinflammatory cytokine, interferon-gamma, and the intracellular pattern recognition receptor, nucleotide-binding oligomerization domain-containing protein 2. Taken together, our study highlights molecular immune phenotypes and global signaling cues in Mob-MDM that may underlie immunomodulatory properties of HK M. obuense. Such properties could be of valuable use in immunotherapy approaches such as adoptive cell therapy against cancer
Co-expression and prognostic significance of the HER family members, EGFRvIII, c-MET, CD44 in patients with ovarian cancer
Inhibitory effects of culinary herbs and spices on the growth of HCA-7 colorectal cancer cells and their COX-2 expression
It is unclear if the anti-inflammatory properties of culinary herbs and spices (CHS) are linked to their ability to inhibit Colorectal cancer cell (CRC) growth. Furthermore, their therapeutic potential with regards to CRC is unknown. The aim of this study was to establish if the inhibition of HCA-7 CRC cell growth by a selection of culinary herbs and spices (CHS) is linked to the inhibition of the cells’ cyclooxygenase-2 (COX-2 )expression, and to investigate their therapeutic potential. CHS inhibited the growth of Human colon adenocarcinoma-7 (HCA-7) cells; the order of potency was turmeric, bay leaf, ginger, sage, and rosemary; their combinations had a synergistic or additive effect on cell growth inhibition. CHS also inhibited COX-2 expression and activity; this action was comparable to that of the specific COX-2 inhibitor Celecoxib. Coincident with COX-2 inhibition was the accumulation of cells in the sub G1 phase of the HCA-7’s cell cycle and, using bay leaf and turmeric, the cleavage of caspase 3 and poly (ADP-ribose) polymerase (PARP). This latter effect showed that the effect of these CHS on growth arrest was irreversible, and was comparable to that of the caspase activator Etoposide. This study provides evidence of a link between the inhibition of HCA-7 growth, and its COX-2 expression, by CHS, and their therapeutic potential
- …
