299 research outputs found
States and transitions in black-hole binaries
With the availability of the large database of black-hole transients from the
Rossi X-Ray Timing Explorer, the observed phenomenology has become very
complex. The original classification of the properties of these systems in a
series of static states sorted by mass accretion rate proved not to be able to
encompass the new picture. I outline here a summary of the current situation
and show that a coherent picture emerges when simple properties such as X-ray
spectral hardness and fractional variability are considered. In particular,
fast transition in the properties of the fast time variability appear to be
crucial to describe the evolution of black-hole transients. Based on this
picture, I present a state-classification which takes into account the observed
transitions. I show that, in addition to transients systems, other black-hole
binaries and Active Galactic Nuclei can be interpreted within this framework.
The association between these states and the physics of the accretion flow
around black holes will be possible only through modeling of the full time
evolution of galactic transient systems.Comment: 30 pages, 11 figures, To appear in Belloni, T. (ed.): The Jet
Paradigm - From Microquasars to Quasars, Lect. Notes Phys. 794 (2009
Semiclassical Instability of the Cauchy Horizon in Self-Similar Collapse
Generic spherically symmetric self-similar collapse results in strong
naked-singularity formation. In this paper we are concerned with particle
creation during a naked-singularity formation in spherically symmetric
self-similar collapse without specifying the collapsing matter. In the generic
case, the power of particle emission is found to be proportional to the inverse
square of the remaining time to the Cauchy horizon (CH). The constant of
proportion can be arbitrarily large in the limit to marginally naked
singularity. Therefore, the unbounded power is especially striking in the case
that an event horizon is very close to the CH because the emitted energy can be
arbitrarily large in spite of a cutoff expected from quantum gravity. Above
results suggest the instability of the CH in spherically symmetric self-similar
spacetime from quantum field theory and seem to support the existence of a
semiclassical cosmic censor. The divergence of redshifts and blueshifts of
emitted particles is found to cause the divergence of power to positive or
negative infinity, depending on the coupling manner of scalar fields to
gravity. On the other hand, it is found that there is a special class of
self-similar spacetimes in which the semiclassical instability of the CH is not
efficient. The analyses in this paper are based on the geometric optics
approximation, which is justified in two dimensions but needs justification in
four dimensions.Comment: 14 pages, 4 figures, minor errors corrected and some sentences added
in the introduction, accepted for publication in Physical Review
Search for DCC in 158A GeV Pb+Pb Collisions
A detailed analysis of the phase space distributions of charged particles and
photons have been carried out using two independent methods. The results
indicate the presence of nonstatistical fluctuations in localized regions of
phase space.Comment: Talk at the PANIC99 Conference, June 9-16, 199
Central Pb+Pb Collisions at 158 A GeV/c Studied by Pion-Pion Interferometry
Two-particle correlations have been measured for identified negative pions
from central 158 AGeV Pb+Pb collisions and fitted radii of about 7 fm in all
dimensions have been obtained. A multi-dimensional study of the radii as a
function of kT is presented, including a full correction for the resolution
effects of the apparatus. The cross term Rout-long of the standard fit in the
Longitudinally CoMoving System (LCMS) and the vl parameter of the generalised
Yano-Koonin fit are compatible with 0, suggesting that the source undergoes a
boost invariant expansion. The shapes of the correlation functions in Qinv and
Qspace have been analyzed in detail. They are not Gaussian but better
represented by exponentials. As a consequence, fitting Gaussians to these
correlation functions may produce different radii depending on the acceptance
of the experimental setup used for the measurement.Comment: 13 pages including 10 figure
Present Status and Future of DCC Analysis
Disoriented Chiral Condensates (DCC) have been predicted to form in high
energy heavy ion collisions where the approximate chiral symmetry of QCD has
been restored. This leads to large imbalances in the production of charged to
neutral pions. Sophisticated analysis methods are being developed to
disentangle DCC events out of the large background of events with
conventionally produced particles. We present a short review of current
analysis methods and future prospects.Comment: 12 pages, 5 figures. Invited talk presented at the 13th International
Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 97),
Tsukuba, Japan, 1-5 Dec 199
Search for Disoriented Chiral Condensates in 158 AGeV Pb+Pb Collisions
The restoration of chiral symmetry and its subsequent breaking through a
phase transition has been predicted to create regions of Disoriented Chiral
Condensates (DCC). This phenomenon has been predicted to cause anomalous
fluctuations in the relative production of charged and neutral pions in
high-energy hadronic and nuclear collisions. The WA98 experiment has been used
to measure charged and photon multiplicities in the central region of 158 AGeV
Pb+Pb collisions at the CERN SPS. In a sample of 212646 events, no clear DCC
signal can be distinguished. Using a simple DCC model, we have set a 90% C.L.
upper limit on the maximum DCC production allowed by the data.Comment: 20 Pages, LaTeX, uses elsart.cls, 8 eps figures included, submitted
to Physics Letters
Global Description of EUSO-Balloon Instrument
For the JEM-EUSO CollaborationThe EUSO-Balloon is a pathfinder of the JEM-EUSO mission, designed to be installed on-board the International Space Station before the end of this decade. The EUSO-Balloon instrument, conceived as a scaleddown version of the main mission, is currently developed as a payload of a stratospheric balloon operated by CNES, and will, most likely, be launched during the CNES flight campaign in 2014. Several key elements of JEM-EUSO have been implemented in the EUSO-Balloon. The instrument consists of an UV telescope, made of three Fresnel lenses, designed to focus the signal of the UV tracks, generated by highly energetic cosmic rays propagating in the earth's atmosphere, onto a finely pixelized UV camera. In this contribution, we review the main stages of the signal processing of the EUSO-Balloon instrument: the photodetection, the analog electronics, the trigger stages, which select events while rejecting random background, the acquisition system performing data storage and the monitoring, which allows the instrument control during operation
PGL-III, a rare intermediate of Mycobacterium leprae phenolic glycolipid biosynthesis, is a potent Mincle ligand
Although leprosy(Hansen's disease) is one ofthe oldestknown diseases, the pathogenicity of Mycobacterium leprae (M. leprae) remains enigmatic. Indeed, the cellwall components responsible for the immune response against M. leprae are as yet largely unidentified. We reveal herephenolic glycolipid-III (PGL-III) as an M. leprae-specific ligand for the immune receptor Mincle. PGL-III is a scarcelypresent trisaccharide intermediate in the biosynthetic pathway toPGL-I, an abundant and characteristic M. leprae glycolipid.Using activity-based purification, we identified PGL-III as a Mincleligand that is more potent than the well-known M. tuberculosis trehalose dimycolate. The cocrystal structure of Mincle and a syntheticPGL-III analogue revealed a unique recognition mode, implying thatit can engage multiple Mincle molecules. In Mincle-deficient miceinfected with M. leprae, increased bacterial burdenwith gross pathologies were observed. These results show that PGL-IIIis a noncanonical ligand recognized by Mincle, triggering protectiveimmunity.PGL-III, a potent immunostimulatory glycolipid,is limitedin M. leprae by the quick addition of a single methylgroup to convert it into immunosuppressive PGL-I, which confers immuneescape.Bio-organic Synthesi
Directed Flow in 158 A GeV + Collisions
The directed flow of protons and positive pions have been studied in 158 A GeV Pb + Pb collisions. A directed flow analysis of the rapidity dependence of the average transverse momentum projected onto the reaction plane is presented for semi-central collisions with impact parameters of approximately 8 fm, where the flow effect is largest. The magnitude of the directed flow is found to be significantly smaller than observed at AGS energies and than RQMD model predictions.The directed flow of protons and positive pions have been studied in 158 A GeV Pb + Pb collisions. A directed flow analysis of the rapidity dependence of the average transverse momentum projected onto the reaction plane is presented for semi-central collisions with impact parameters of approximately 8 fm, where the flow effect is largest. The magnitude of the directed flow is found to be significantly smaller than observed at AGS energies and than RQMD model predictions
Measurement of the ttbar Production Cross Section in ppbar collisions at sqrt s = 1.96 TeV in the All Hadronic Decay Mode
We report a measurement of the ttbar production cross section using the
CDF-II detector at the Fermilab Tevatron. The analysis is performed using 311
pb-1 of ppbar collisions at sqrt(s)=1.96 TeV. The data consist of events
selected with six or more hadronic jets with additional kinematic requirements.
At least one of these jets must be identified as a b-quark jet by the
reconstruction of a secondary vertex. The cross section is measured to be
sigma(tbart)=7.5+-2.1(stat.)+3.3-2.2(syst.)+0.5-0.4(lumi.) pb, which is
consistent with the standard model prediction.Comment: By CDF collaboratio
- …