48 research outputs found

    Collision tumors revealed by prospectively assessing subtype-defining molecular alterations in 904 individual prostate cancer foci.

    Get PDF
    BACKGROUNDProstate cancer is multifocal with distinct molecular subtypes. The utility of genomic subtyping has been challenged due to inter- and intrafocal heterogeneity. We sought to characterize the subtype-defining molecular alterations of primary prostate cancer across all tumor foci within radical prostatectomy (RP) specimens and determine the prevalence of collision tumors.METHODSFrom the Early Detection Research Network cohort, we identified 333 prospectively collected RPs from 2010 to 2014 and assessed ETS-related gene (ERG), serine peptidase inhibitor Kazal type 1 (SPINK1), phosphatase and tensin homolog (PTEN), and speckle type BTB/POZ protein (SPOP) molecular status. We utilized dual ERG/SPINK1 immunohistochemistry and fluorescence in situ hybridization to confirm ERG rearrangements and characterize PTEN deletion, as well as high-resolution melting curve analysis and Sanger sequencing to determine SPOP mutation status.RESULTSBased on index focus alone, ERG, SPINK1, PTEN, and SPOP alterations were identified in 47.5%, 10.8%, 14.3%, and 5.1% of RP specimens, respectively. In 233 multifocal RPs with ERG/SPINK1 status in all foci, 139 (59.7%) had discordant molecular alterations between foci. Collision tumors, as defined by discrepant ERG/SPINK1 status within a single focus, were identified in 29 (9.4%) RP specimens.CONCLUSIONInterfocal molecular heterogeneity was identified in about 60% of multifocal RP specimens, and collision tumors were present in about 10%. We present this phenomenon as a model for the intrafocal heterogeneity observed in previous studies and propose that future genomic studies screen for collision tumors to better characterize molecular heterogeneity.FUNDINGEarly Detection Research Network US National Cancer Institute (NCI) 5U01 CA111275-09, Center for Translational Pathology at Weill Cornell Medicine (WCM) Department of Pathology and Laboratory Medicine, US NCI (WCM SPORE in Prostate Cancer, P50CA211024-01), R37CA215040, Damon Runyon Cancer Research Foundation, US MetLife Foundation Family Clinical Investigator Award, Norwegian Cancer Society (grant 208197), and South-Eastern Norway Regional Health Authority (grant 2019016 and 2020063)

    Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM

    Full text link
    The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75-78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs

    Glioblastomas with primitive neuronal component harbor a distinct methylation and copy‑number profle with inactivation of TP53, PTEN, and RB1

    Get PDF
    Glioblastoma IDH-wildtype presents with a wide histological spectrum. Some features are so distinctive that they are considered as separate histological variants or patterns for the purpose of classification. However, these usually lack defined (epi-)genetic alterations or profiles correlating with this histology. Here, we describe a molecular subtype with overlap to the unique histological pattern of glioblastoma with primitive neuronal component. Our cohort consists of 63 IDH-wildtype glioblastomas that harbor a characteristic DNA methylation profile. Median age at diagnosis was 59.5 years. Copy-number variations and genetic sequencing revealed frequent alterations in TP53, RB1 and PTEN, with fewer gains of chromosome 7 and homozygous CDKN2A/B deletions than usually described for IDH-wildtype glioblastoma. Gains of chromosome 1 were detected in more than half of the cases. A poorly differentiated phenotype with frequent absence of GFAP expression, high proliferation index and strong staining for p53 and TTF1 often caused misleading histological classification as carcinoma metastasis or primitive neuroectodermal tumor. Clinically, many patients presented with leptomeningeal dissemination and spinal metastasis. Outcome was poor with a median overall survival of only 12 months. Overall, we describe a new molecular subtype of IDH-wildtype glioblastoma with a distinct histological appearance and genetic signature.publishedVersio

    Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM

    Get PDF
    The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75–78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs

    Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM

    Get PDF
    The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75-78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs.Peer reviewe

    Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4

    Get PDF
    The bromodomain and extra-terminal (BET) family of proteins, comprised of four members including BRD2, BRD3, BRD4 and the testis-specific isoform BRDT, largely function as transcriptional co-activators 1–3 and play critical roles in various cellular processes, including cell cycle, apoptosis, migration and invasion 4,5. As such, BET proteins enhance the oncogenic functions of major cancer drivers by either elevating their expression such as c-Myc in leukemia 6,7 or by promoting transcriptional activities of oncogenic factors such as AR and ERG in the prostate cancer setting 8. Pathologically, BET proteins are frequently overexpressed and clinically linked to various types of human cancers 5,9,10, therefore pursued as attractive therapeutic targets for selective inhibition in patients. To this end, a number of bromodomain inhibitors, including JQ1 and I-BET, have been developed 11,12 and shown promising outcomes in early clinical trials. Despite resistance to BET inhibitor has been documented in pre-clinical models 13–15 the molecular mechanisms underlying acquired resistance are largely unknown. Here, we report that Cullin 3SPOP earmarks BET proteins including BRD2, BRD3 and BRD4 for ubiquitination-mediated degradation. Pathologically, prostate cancer-associated SPOP mutants fail to interact with and promote the destruction of BET proteins, leading to their elevated abundance in SPOP-deficient prostate cancer. As a result, prostate cancer cells and prostate cancer patient-derived organoids harboring SPOP mutations are more resistant to BET inhibitor-induced cell growth arrest and apoptosis. Therefore, our results elucidate the tumor suppressor role of SPOP in prostate cancer by negatively controlling BET protein stability, and also provide a molecular mechanism for BET inhibitor resistance in prostate cancer patients bearing SPOP mutations

    Sarcoma classification by DNA methylation profiling

    Get PDF
    Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate. Here, we demonstrate classification of soft tissue and bone tumours using a machine learning classifier algorithm based on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62 tumour methylation classes constituting a broad range of soft tissue and bone sarcoma subtypes across the entire age spectrum. The performance is validated in a cohort of 428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our results demonstrate the potential of the DNA methylation-based sarcoma classification for research and future diagnostic applications

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival
    corecore