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Multiomic neuropathology improves 
diagnostic accuracy in pediatric 
neuro-oncology

The large diversity of central nervous system (CNS) tumor types in  
children and adolescents results in disparate patient outcomes and renders 
accurate diagnosis challenging. In this study, we prospectively integrated 
DNA methylation profiling and targeted gene panel sequencing with 
blinded neuropathological reference diagnostics for a population-based 
cohort of more than 1,200 newly diagnosed pediatric patients with CNS 
tumors, to assess their utility in routine neuropathology. We show that 
the multi-omic integration increased diagnostic accuracy in a substantial 
proportion of patients through annotation to a refining DNA methylation 
class (50%), detection of diagnostic or therapeutically relevant genetic 
alterations (47%) or identification of cancer predisposition syndromes 
(10%). Discrepant results by neuropathological WHO-based and DNA 
methylation-based classification (30%) were enriched in histological 
high-grade gliomas, implicating relevance for current clinical patient 
management in 5% of all patients. Follow-up (median 2.5 years) suggests 
improved survival for patients with histological high-grade gliomas 
displaying lower-grade molecular profiles. These results provide 
preliminary evidence of the utility of integrating multi-omics in 
neuropathology for pediatric neuro-oncology.

Children and adolescents can be diagnosed with a broad spectrum of 
central nervous system (CNS) tumors with divergent clinical behavior. 
The recently updated World Health Organization (WHO) classification 
of CNS tumors1,2 recognizes a plethora of variants that can be difficult 
to distinguish. Some are exceedingly rare, such that a neuropathol-
ogist would see only very few cases over the course of their career. 
To improve diagnostic accuracy in neuro-oncology, we developed 
a neuro-oncology-specific next-generation sequencing (NGS) gene 
panel3 and introduced a DNA methylation-based classification system 
for CNS tumors4. Since 2016, the accompanying online research tool 
for CNS tumor classification from DNA methylation data has seen more 
than 90,000 sample uploads. Although the benefit of implement-
ing this tool in specialized centers has been reported—especially for 
difficult-to-diagnose tumors5–7—its utility in a routine diagnostic setting 

still has to be evaluated. We launched the Molecular Neuropathology 
2.0 (MNP 2.0) study as part of the German pediatric neuro-oncology 
‘Treatment Network HIT’, aiming to integrate DNA methylation analysis 
and gene panel sequencing with blinded central neuropathological 
assessment for a population-based cohort of pediatric patients with 
CNS tumors at the time of primary diagnosis.

Results
Patient recruitment and sample processing
Over a 4-year period (April 2015 to March 2019), 1,204 patients with 
available formalin-fixed, paraffin-embedded (FFPE) tumor tissue were 
enrolled, excluding 163 patients who did not fulfill the inclusion cri-
teria (117 recurrences, 23 retrospective registrations, 12 metastases,  
11 adults) (Fig. 1a). Patients were enrolled from 65 centers in Germany, 
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Comparison of WHO-based and DNA methylation-based clas-
sification. Directly juxtaposing WHO-based tumor type and DNA 
methylation class for individual tumors (Fig. 2, Extended Data Fig. 5, 
Supplementary Fig. 6 and Supplementary Table 1) as well as pairwise 
comparison indicated strong correlation between combinations 
known to correspond or overlap across categories (Extended Data 
Fig. 6, Supplementary Fig. 7 and Supplementary Table 3) but also a 
high fraction of tumors unclassifiable by RF-based prediction among 
WHO-defined HGG (33.5%), LGG (20%) and other rare tumors (37.6%) 
(Fig. 2, Extended Data Fig. 5 and Supplementary Table 1). Visualiza-
tion of DNA methylation patterns by t-distributed stochastic neigh-
bor embedding (t-SNE) (Fig. 3a and Supplementary Table 4), and 
subsequent class assignment by visual inspection (Supplementary  
Fig. 8a), allowed classification of another 229 samples, with profiles 
of 34 tumors (3.0%) suggestive of novel molecular classes not repre-
sented in the original reference cohort4, such as HGG of the poste-
rior fossa and neuroepithelial tumors with PATZ1 fusions12 or PLAGL1 
fusions13 (Fig. 3b,c and Supplementary Fig. 8c). In most tumors (67.8%), 
neuropathological WHO-based tumor typing and DNA methylation 
class prediction were considered concordant, with an additional 
refinement by DNA methylation class in 49.7% of all cases (Fig. 3c and 
Supplementary Table 1). Assignments to a discrepant tumor class 
(within a category, 2.0%) or to a discrepant tumor category (3.0%) were 
considered clinically relevant (that is, changing the recommended 
treatment protocol) in 5% of all cases. This included 15 of 43 samples 
with inconclusive histology or no detectable tumor tissue, of which 
most (11/15) were classified as lower-grade glial or glioneuronal tumors 
by DNA methylation analysis (Extended Data Fig. 5f). There was an 
enrichment of clinically relevant discrepancies in histologically clas-
sified HGG (24/173, 13.9%) compared to other WHO-defined categories 
(P < 0.001). Among those, the most common combinations (21/24) 
included anaplastic (pilocytic) astrocytomas or glioblastomas (WHO 
grade 3–4) assigned to DNA methylation classes of lower-grade glio-
mas, including PA, GG or MYB/MYBL-altered tumors (WHO grade 1–2) 
(Fig. 2 and Supplementary Fig. 6a). Clinically relevant discrepancies 
were rarer in LGG (2.2%), MB (1.1%), EPN (1.6%) and other tumor types 
(0.0%). Discrepant tumor types and classes currently not considered 
clinically relevant were assigned in 4.6% of samples, affecting mostly 
lower-grade glial and glioneuronal tumors (29/52) (Extended Data  
Fig. 5a and Supplementary Fig. 6b). Samples could not be assigned to 
any tumor category or did not contain detectable tumor tissue by both 
neuropathological assessment and DNA methylation analysis in 1.4% 
and 0.7%, respectively (Extended Data Fig. 5f and Fig. 3b,c).

Integration of NGS
Detection of relevant genetic alterations. Using a customized 
enrichment/hybrid-capture-based NGS gene panel comprising 130 
genes of interest (Supplementary Table 5)3, complemented by RNA 
sequencing in selected cases14, we detected genetic alterations in 625 
of 1,034 tumors (60.4%) (Fig. 4, Extended Data Fig. 7, Supplementary 
Fig. 9 and Supplementary Table 6). For the most commonly affected 
gene BRAF (272/1,034), fusion events were observed in 158 of 237 DNA 
methylation-defined infratentorial (124/160), midline (28/51) or cor-
tical LGG (6/26), whereas V600E mutations were further observed in 
GG (7/13) and PXA (17/23). Other genes mutated in ≥2% of all tumors 
were TP53 (5.1%), FGFR1 (4.4%), NF1 (4.2%), H3F3A (3.7%) and CTNNB1 
(2.2%). Recurrent alterations occurring in ≥75% of tumors (with ≥2 
sequenced) in specific DNA methylation classes included histone 3 
K27M in DMG, K27 (27/27), H3F3A G34R/V in HGG, G34 (11/11), IDH1 in 
gliomas, IDH-mutant (7/7), BCOR ITD in CNS, BCOR (6/6), SMARCB1 in 
ATRT, TYR (6/8), DICER1 in primary intracranial DICER1-mutant sarco-
mas (2/2), NF2 in spinal EPN (2/2) and TSC1 in SEGA (2/2). A fraction of 
tumors unclassifiable or assigned to a control class by RF-based DNA 
methylation class prediction harbored diagnostically indicative altera-
tions affecting BRAF (V600E, 25/214; KIAA1549:BRAF, 22/214), IDH1 

Australia/New Zealand (starting June 2017) and Switzerland (starting 
July 2017) in a population-based manner (Fig. 1b and Supplementary 
Figs. 1 and 2). In 59 tumors, received tissue was either insufficient  
(31, 2.6%) or not suitable (28, 2.4%) for DNA methylation analysis and/
or NGS (4.0% and 1.4%, respectively) (Fig. 1a). Median time from arrival 
of FFPE sections at the molecular testing laboratory to first molecular 
report was 21 days (Supplementary Fig. 3a,b). Timelines from tumor 
surgery to successful patient registration were shorter in centers with 
higher recruitment rates (Supplementary Fig. 3c).

CNS tumor classification
WHO-based CNS tumor types by neuropathological assessment. 
The distribution of tumor types by reference neuropathological evalu-
ation according to the WHO classification of CNS tumors, and the 
corresponding clinical patient data, were considered representa-
tive of a population-based cohort of pediatric patients with CNS 
tumors undergoing tumor biopsy or resection (Fig. 1c, Extended Data  
Figs. 1 and 2a, Supplementary Fig. 2 and Supplementary Table 1). Com-
parison with epidemiological data from the German Childhood Cancer 
Registry8 showed an annual recruitment of up to 64% of all patients 
newly diagnosed with CNS tumors (Supplementary Fig. 2b). Neurofi-
bromatosis type 1-associated or diffuse midline gliomas may have been 
underrepresented, as they are not consistently biopsied. No neoplastic 
tissue was detected in 21 samples (1.7%). In the remaining 1,182 tumors, 
a confident diagnosis was assigned in 1,028 cases (87.0%), whereas 77 
were compatible with and 22 suspicious of a certain tumor type (6.5% 
and 1.9%, respectively). A descriptive diagnosis was established for 
55 tumors (4.7%), including 33 (2.7%) that could not be assigned to 
any tumor category. The most common diagnostic categories were 
low-grade glial/glioneuronal (LGG) tumors (37.7%), medulloblastomas 
(MBs, 16.0%), high-grade gliomas (HGGs, 15.6%), ependymal (EPN) 
tumors (10.6%) and other embryonal or pineal (EMB/PIN) tumors (6.2%) 
(Supplementary Fig. 2a). Various other less frequent tumor types made 
up a total of 9.5% of the cohort. Patient age and sex were distributed as 
expected (Extended Data Fig. 2a).

DNA methylation-based CNS tumor classification. Using, in each 
case, the latest applicable version at the time of diagnosis (version 9.0–
version 11b4; Methods (ref. 4)) of a DNA methylation-based random for-
est (RF) class prediction algorithm, tumors were assigned to 65 (from a 
possible 91) different DNA methylation classes (Fig. 1c, Extended Data 
Fig. 1 and Supplementary Table 1). Besides LGG (28.5%), MB (16.3%) 
formed the second largest category, followed by HGG (10.1%), EPN 
(10.1%) and other EMB/PIN tumors (5.5%), whereas the remaining 6.2% 
were distributed among other less frequent classes (Fig. 1c and Sup-
plementary Fig. 2a). A substantial fraction of tumors (21.1%) could 
not be confidently assigned to a DNA methylation class. The DNA 
methylation profiles of 25 (2.2%) samples assigned to a control class of 
non-neoplastic tissue were indicative of low tumor cell content in the 
analyzed tissue. DNA methylation classes were associated with patterns 
of patient age, sex and tumor location (Extended Data Figs. 2b and 3) as 
well as DNA copy number alterations (Extended Data Fig. 4, Supplemen-
tary Figs. 4 and 5 and Supplementary Table 2). As examples, the DNA 
methylation class ‘infantile hemispheric glioma’ exclusively comprised 
hemispheric tumors in infants with frequent focal amplifications on 
cytoband 2p23.2, indicative of fusions involving the ALK gene9,10; the 
DNA methylation class ‘PXA’ comprised hemispheric tumors across 
ages consistently harboring homozygous deletions of the CDKN2A/B 
locus (9p21.3); and the DNA methylation class ‘ETMR’ comprised pre-
dominantly occipital or posterior fossa tumors in young children 
with a pathognomonic amplification at 19q13.42 (ref. 11). Additional 
significant copy number alterations included focal deletion involving 
the MYB locus in ‘LGG, MYB/MYBL1’ (6q24.1), amplification of MYCN in 
‘HGG, MYCN’ (2p24.3) and amplification involving EGFR in ‘HGG, RTK’ 
(7p11.2) (Extended Data Fig. 4).
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(8/214) or H3F3A (K27M, 2/214) as well as less clearly pathognomonic 
mutations. Overall, alterations considered of diagnostic relevance 
were detected in 41.9% of tumors (BRAF, 26.5%; H3F3A, 3.9%; ATRX, 
2.1%; CTNNB1, 1.8%; IDH1, 1.6%; PTCH1, 1.5%; ZFTA, 1.1%; SMARCB1, 1.1%; 
and others, <1%). Alterations were considered to have therapeutic 
implications in 15.2% of tumors, with directly targetable alterations 
in BRAF (V600E, 7.4%), FGFR1/3 (4.0%), ALK (0.8%), NTRK2/3 (0.4%), 
MET (0.1%) and RET (0.1%) (Fig. 4b). Tumors considered hypermutated 

(with ≥10 somatic mutations per megabase (Mb)) (11/1,034, 1.1%) 
were among DNA methylation classes MB, SHH (4/37), HGG, midline 
(2/6), IDH (1/2) and unclassifiable (4/197) tumors (Extended Data Fig. 
7b), with constitutional pathogenic alterations in mismatch repair 
(MMR)-associated genes detected in three patients with hypermutated 
tumors (see below). A mutational burden >5 per Mb was observed in 
tumors from seven of 11 patients with constitutional pathogenic altera-
tions in MMR-associated genes.
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Enrolled patients (n = 1,204)
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Fig. 1 | Study design, patient recruitment and CNS tumor classification.  
a, CONSORT flow diagram for 1,367 patients registered between April 2015 and 
March 2019. b, Schematic geographical overview of 1,204 enrolled patients by 
center of recruitment. Circle size is proportional to the number of patients. 
Country size is not to scale. c, Tumor classification into WHO-based CNS tumor 
types (upper panel) and DNA methylation classes (lower panel). Numbers 

in brackets indicate tumors per tumor type or class. Corresponding and 
overlapping tumor types and classes are indicated by connecting gray bars. 
y-axis scale is square root transformed for improved visibility of tumor types 
and classes occurring at low frequency. See Extended Data Fig. 1 for a full list of 
individual abbreviations. See Supplementary Table 1 for underlying data. GPS, 
gene panel sequencing.
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Prevalence of cancer predisposition syndromes. Gene panel 
sequencing of leukocyte-derived DNA enabled screening for consti-
tutional variants considered (likely) pathogenic (LPV/PV) in 1,034 
patients. Cancer predisposing variants were detected in 101 of 1,034 
individuals (9.8%) (Fig. 4b) affecting 25 genes (Fig. 4a, Extended Data 
Fig. 8, Supplementary Fig. 9 and Supplementary Table 6). The most 
common cancer predisposition syndromes (CPSs) were neurofibroma-
tosis type 1 (caused by constitutional LPV/PV in NF1; 1.5%), Li–Frau-
meni syndrome (TP53; 1.2%), constitutional MMR deficiency or Lynch 
syndrome (MLH1, MSH2 and MSH6, 1.1%; PMS2 was not included in the 
gene panel at the time of analysis), ataxia–telangiectasia and ATM 
heterozygous carriers (ATM, 0.9%), neurofibromatosis type 2 (NF2, 
0.8%), DICER1 syndrome (DICER1, 0.6%) and rhabdoid tumor predis-
position syndrome 1 (SMARCB1, 0.4%). LPV/PV in other genes occurred 
at lower frequencies (<0.5%). Known associations included NF1 in LGG 
and SMARCB1 in atypical teratoid/rhabdoid tumor (AT/RT) (Supple-
mentary Fig. 9a,e). Additional findings included constitutional TP53 
variants enriched in MYCN-activated HGG; MLH1, MSH2 and MSH6 
in RTK-activated and midline HGG classes (Extended Data Fig. 8 and 
Supplementary Fig. 9b); and notable findings including a previously 
unidentified PTPN11 variant in a patient with an H3 K27-altered DMG. 
We also observed a substantial proportion of patients with pathogenic 
constitutional alterations whose tumors were not readily classifi-
able by RF-based DNA methylation class prediction (31/101, 30.7%), 
of which most displayed high-grade (13/31, 41.9%) or low-grade (4/31, 
12.9%) glioma histology, in line with t-SNE-based DNA methylation 
class assignment (15/31, 48.4%), including three IDH1-mutant astro-
cytomas. Indications for cancer predisposition were documented at 
national study headquarters in only 37 of 101 (36.6%) patients in whom 
we detected constitutional pathogenic variants, indicating a high 
proportion of previously unknown CPS among affected individuals 
and their families. Due to the lack of routine copy number assessment 
in constitutional patient DNA, constitutional copy number variations 
of SMARCB1 were not reported in two patients with AT/RT and a known 

rhabdoid tumor predisposition syndrome where data were suggestive 
of a heterozygous deletion.

Interdisciplinary tumor board discussions
Cases with discrepant neuropathological WHO-based and DNA 
methylation-based classification were discussed in a weekly interdis-
ciplinary tumor board (Extended Data Fig. 9 and Supplementary Table 
1). Focusing on discrepancies after DNA methylation class assignment 
by t-SNE inspection, 70.1% of discussed discrepancies were consid-
ered clinically relevant. Additional gene panel sequencing data and 
reference neuroradiological evaluation were available in 93.5% and 
76.6% of cases, respectively, and considered compatible with both 
WHO-based (63% and 100%) and DNA methylation-based (100% and 
85%) classification in most cases. Variants detected by NGS considered 
inconsistent with WHO tumor type predominantly occurred as BRAF 
or MYBL1 alterations in HGG defined by WHO criteria (8/14). Additional 
investigations (such as targeted sequencing or FISH) were initiated in 
15.6%. Constellations enabled a consensus in 27.3% of discussed cases, 
in which an integrated diagnosis was based on DNA methylation class 
(42.9%) or WHO tumor type (9.5%); the WHO tumor type was within the 
histopathological spectrum of the DNA methylation class (38.1%); or 
the DNA methylation class was considered as a differential diagnosis by 
reference neuropathological evaluation (9.5%). Discrepancies remained 
irresolvable in most discussed cases (71.4%). Review of WHO-defined 
anaplastic astrocytomas and glioblastomas displaying DNA methyla-
tion profiles of lower-grade gliomas (frequently occurring in infants and 
young children) indicated increased mitotic activity, in particular with 
aberrant (atypical) mitotic figures, as the main reason for assigning a 
high grade, with thrombosed vessels or palisading necrosis as criteria 
for anaplasia in individual cases. One sample swap (<0.1%) occurred 
during molecular analysis and was detected upon discussion.

Risk stratification for patients with HGG
Given the recurring constellation of HGG according to WHO criteria with 
DNA methylation profiles of lower-grade gliomas (Fig. 2), we stratified 
patients with WHO-defined HGG into molecular risk groups. Data on 
survival and treatment modalities were available for 952 enrolled patients 
(79.1%; Supplementary Table 1), including 162 patients with WHO-defined 
HGG. Median follow-up was 22 months (range 0–192 months) after diag-
nosis. Tumors from high-risk DNA methylation classes (DMG, K27M; 
HGG, G34; HGG, midline; HGG, MYCN; HGG, RTK) were associated with 
poor overall survival (OS), whereas HGG from intermediate-risk (A, IDH; 
HGG, IDH; aPA; PXA; IHG; CNS NB, FOXR2) and low-risk (PA, PF; PA, mid-
line; PA/GG, hemispheric; GG; LGG, MYB/MYBL1; DLGNT) DNA meth-
ylation classes were associated with significantly longer OS (P < 0.001, 
log-rank test) (Fig. 5a,b). Patients in the low-risk group included four 
children in complete remission (two of them 34 months and 41 months 
after tumor resection and following a watch-and-wait strategy) and only 
five patients who had received both radiotherapy and chemotherapy 
(Supplementary Table 1). Similar results in this group were obtained 
when using DNA methylation class assignment by t-SNE analysis (Supple-
mentary Fig. 10) or defining the HGG cohort for analysis by DNA methyla-
tion classes (Supplementary Fig. 11a,b). There was also a significant, yet 
less discriminatory, difference when comparing tumors assigned WHO 
grade 3 with WHO grade 4 (P = 0.0051) (Fig. 5c,d), and WHO grades 1–2 
(PXA, WHO grade 2 in 9/13 cases) indicated improved OS among DNA 
methylation-defined HGG (Supplementary Fig. 11c,d). Additional survival 
analyses by WHO-based tumor type and DNA methylation class in LGG 
(Supplementary Fig. 12), MB (Supplementary Fig. 13), EPN (Supplemen-
tary Fig. 14) and EMB/PIN (Supplementary Fig. 15) indicated differences 
largely known from previous retrospective studies.

Advancement of automated DNA methylation class prediction
To evaluate the advancement of RF-based DNA methylation class pre-
diction, we applied version 11b4 (publicly released in October 2017)4 
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and version 12.5 (released in January 2022) of the algorithm to the DNA 
methylation dataset of 1,124 tumors (Extended Data Fig. 10 and Supple-
mentary Table 1). By increasing the total class number and introducing 
a hierarchy of DNA methylation subclasses (184), classes (147), class 
families (81) and superfamilies (66), the total number of tumors that 
could not readily be assigned to any tumor category decreased from 
29% in version 11b4 to 15% in version 12.5. At the same time, 32 tumors 
(2.9%) that were assigned to a distinct class in version 11b4 did not 
reach the threshold score of 0.9 for any class or family in version 12.5. 
Another 135 tumors (12.0%, 126 of which were deemed classifiable by 
t-SNE analysis) remained unclassifiable in both versions of the RF-based 
algorithm. In 58 of 167 samples unclassifiable by version 12.5, genetic 
alterations indicative of a DNA methylation class were detected by NGS 
in BRAF (42/167), IDH1 (5/167), histone 3 genes (4/167), CTNNB1 (3/167), 
ALK (2/167), SMARCB1 (1/167) and YAP1 (1/167).

Discussion
In contrast to the unbiased approach presented here, previous studies 
applying similar techniques were largely performed in retrospect4,15, 
aiming specifically to subgroup archived cohorts defined by WHO 
tumor types16–19 or to characterize novel CNS tumor groups based on 
distinct DNA methylation patterns12,13,20–23, and smaller-scale prospec-
tive studies focused explicitly on tumors challenging to classify by 
conventional neuropathology and/or did not follow-up on patient 
outcome5–7.

Our data support the incorporation of DNA methylation-based 
classification as included in the 5th edition of the WHO classification 
of CNS tumors as a desirable diagnostic criterion for many tumor types 
and an essential criterion for some otherwise difficult to diagnose2,24. 
Adding a DNA methylation (sub)class further refines the molecular 
layer of a coherent integrated diagnosis in most cases, which is becom-
ing increasingly important in the era of molecularly informed patient 
stratification and subgroup-specific therapies. DNA methylation analy-
sis has the potential to increase certainty in tumors with a suspected 
diagnosis and to establish a valid diagnosis in some samples where 

no neoplastic cells can be detected by neuropathological examina-
tion alone. On the other hand, contamination by non-neoplastic cells 
can be a limitation for reaching the diagnostic threshold for DNA 
methylation-based CNS tumor class prediction and underlines the 
importance of thorough neuropathological assessment25.

The enrichment of discrepant classifications in gliomas suggests 
that this group of pediatric patients may currently benefit most from 
integrating DNA methylation analysis in standard neuropathological 
practice. A substantial fraction of histologically defined HGGs present 
with DNA methylation profiles resembling those of lower-grade lesions. 
Our interdisciplinary tumor board discussions show that—especially 
in the absence of pathognomonic mutations or fusions—a diagnostic 
gold standard is usually missing, making consensus on an integrated 
diagnosis often difficult to reach. In the ongoing debate concern-
ing the clinical behavior of these tumors, our follow-up data indicate 
improved outcome, similar to patients with histologically defined 
LGG. Using prospectively assigned DNA methylation classes to stratify 
patients with HGG into molecular risk groups predicted prognosis more 
accurately than WHO grading and should be considered for clinical 
decision-making in such constellations. Some of these are already 
incorporated in the current WHO classification, exemplified by exclu-
sion of anaplasia as an essential diagnostic criterion for MYB-altered or 
MYBL1-altered diffuse astrocytomas2. Increased mitotic activity as the 
main reason for diagnosing HGGs in infants and young children whose 
tumors display DNA methylation patterns of lower-grade gliomas war-
rants future studies to better define cutoffs for tumor mitotic activity 
in this age group. The DNA methylation class comprising both WHO 
grades 2 and 3 of PXA (based on mitotic count2, here provisionally 
categorized as HGG) was associated with an intermediate prognosis 
compared to both HGG and LGG within our follow-up period, ren-
dering grading for this class difficult and re-visiting these data in the  
future necessary.

For tumors not readily classifiable by RF-based class predic-
tion, subjecting DNA methylation data to advanced analyses such 
as t-SNE alongside suitable reference cohorts can be instrumental in 
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determining tumor type. Tumors with class prediction scores slightly 
below the threshold of 0.9 are typically projected onto or in close 
proximity to reference tumors of a DNA methylation class and may still 
be reliably assigned to that class (Supplementary Fig. 16)25. In contrast, 
tumors with overall low scores are often projected in between refer-
ence tumor classes. They may indicate the existence of yet unknown 
DNA methylation classes, especially when clustering together with 
other difficult-to-classify samples over time. Results from our study 
fed into a constantly growing database of more than 100,000 tumors 
that allows for identifying such clusters, exploring their associated 
molecular, pathological and clinical features, and iteratively intro-
ducing them as new reference DNA methylation (sub)classes into the 
RF-based class prediction algorithm12,13,20–22,26, resulting in lower rates 
of unclassifiable tumors applying in its latest version. The requirement 
of careful visual inspection and (subjective) interpretation of output 
generated by t-SNE analyses, however, remain a caveat when used for 
clinical decision-making.

The associations between certain copy number alterations and 
DNA methylation classes in our current cohort confirm the benefit 
of integrating DNA copy number alterations derived from DNA meth-
ylation arrays into diagnostic considerations25. At the time of primary 
diagnosis, DNA methylation-based CNS tumor classification and 
copy number profiling is ideally complemented by targeted NGS of 
a neuro-oncology-specific gene panel (or equivalent approaches) 
designed to detect diagnostically and/or therapeutically relevant 
alterations from tumor and constitutional DNA3. The presence of a 
pathognomonic alteration (for example, in BRAF, histone 3 variants, 
IDH, ZFTA, BCOR, MN1 and others) corroborates a specific diagnosis in 
tumors with discrepant classification or inconclusive DNA methylation 
analysis. As molecularly informed treatment strategies are becoming 
increasingly feasible as first-line options, identifying a tumor’s muta-
tional makeup, including directly targetable alterations, will be essen-
tial in guiding patients toward optimal treatment, as demonstrated 
by targeting BRAF V600E, FGFR, ALK and NTRK in (among others) 
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pediatric gliomas27–32. In selected tumors, subsequent RNA sequencing 
from the same FFPE sample (as performed here) represents a feasible 
approach to detect fusions with immediate impact on patient care14,23.

Our results suggest previous assessments of pathogenic consti-
tutional variants underlying CNS tumor development (in approxi-
mately 10% of patients) to appear broadly robust15 and an enrichment 
of Li–Fraumeni syndrome, Lynch syndrome and constitutional MMR 
deficiency underlying H3 wild-type HGG. We, therefore, recom-
mend genetic counseling and testing for pediatric patients with H3 
wild-type HGG (in addition to existing guidelines33,34). The clinical 
information retrieved through national study headquarters indicates 
that most patients were not known or suspected to carry pathogenic 

constitutional variants, similarly to previous observations beyond 
patients with CNS tumors35,36. This highlights the importance of diligent 
consultation of patients and their families, considering that more than 
95% of study participants and parents elected to be informed about 
constitutional pathogenic variants detected by NGS. Detection of CPSs 
at primary diagnosis brings added advantages over precision oncol-
ogy programs designed for relapsed or progressive malignancies35 
by enabling appropriate adaptation of treatment approaches already 
in the frontline setting—for example, avoiding ionizing irradiation 
to reduce the risk of secondary tumors in patients with Li–Fraumeni 
syndrome37 or considering upfront immune checkpoint inhibition 
in children with constitutional DNA replication repair deficiency38,39.  
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The high fraction of tumors not readily classifiable by RF-based class 
prediction in patients with CPSs may be addressed by augmenting 
future reference cohorts with syndrome-associated tumors40.

Although we consider the median turnaround time of ~21 days 
for the centralized generation and interpretation of DNA methylation 
profiling and targeted NGS results acceptable, the regulatory and 
logistic framework of our study resulted in delays primarily affect-
ing pre-analytical steps performed at the level of more than 60 local 
centers, posing a challenge especially for hospitals with lower patient 
recruitment. DNA methylation analysis has recently been decentralized 
and is now being performed at more than five experienced neuropa-
thology centers across Germany as part of their immediate reference 
evaluation, minimizing total turnaround times between operation and 
reporting down to less than 28 days. Although targeted tumor/blood 
NGS is currently being performed in a similar timeframe, it cannot be 
initiated without informed consent from patients/parents indicating 
their desire to (not) be informed about potential relevant constitutional 
alterations. Together with the need to obtain and ship a patient blood 
sample, this may cause pre-analytical delay if not initiated early.

Providing multi-omic data from as few as ten unstained sections of 
FFPE tissue, our study produced a high level of information at reason-
able costs and with a very low dropout rate of ~5% of tumors. The ben-
efits of our program and their impact on clinical patient management 
have prompted German national health insurance companies to cover 
the expenses for DNA methylation analysis and gene panel sequencing 
(from both tumor tissue and blood leukocytes) as part of the reference 
services of the nationwide multi-disciplinary ‘Treatment Network HIT’ 
for children and adolescents with newly diagnosed CNS tumors. This 
sets an excellent example of direct and rapid translation of scientific 
innovation into routine clinical practice, substantially improves the 
standard of care in German pediatric neuro-oncology and may serve 
as a blueprint for other countries.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41591-023-02255-1.

References
1.	 Louis, D.N., Ohgaki, H., Wiestler, O.D. & Cavenee, W.K. WHO 

Classification of Tumours of the Central Nervous System. Revised 
4th ed (WHO Press, 2016).

2.	 WHO Classification of Tumours Editorial Board. Central Nervous 
System Tumours. WHO Classification of Tumours, 5th ed, vol 6. 
https://publications.iarc.fr/601 (International Agency for Research 
on Cancer, 2021).

3.	 Sahm, F. et al. Next-generation sequencing in routine brain 
tumor diagnostics enables an integrated diagnosis and identifies 
actionable targets. Acta Neuropathol. 131, 903–910 (2016).

4.	 Capper, D. et al. DNA methylation-based classification of central 
nervous system tumours. Nature 555, 469–474 (2018).

5.	 Pickles, J. C. et al. DNA methylation-based profiling for paediatric 
CNS tumour diagnosis and treatment: a population-based study. 
Lancet Child Adolesc. Health 4, 121–130 (2020).

6.	 Pages, M. et al. The implementation of DNA methylation profiling 
into a multistep diagnostic process in pediatric neuropathology: 
a 2-year real-world experience by the French Neuropathology 
Network. Cancers (Basel) 13, 1377 (2021).

7.	 Karimi, S. et al. The central nervous system tumor methylation 
classifier changes neuro-oncology practice for challenging  
brain tumor diagnoses and directly impacts patient care.  
Clin. Epigenetics 11, 185 (2019).

8.	 Erdmann, F., Kaatsch, P., Grabow, D. & Spix, C. German Childhood 
Cancer Registry—Annual Report 2019 (1980–2018). (Institute of 
Medical Biostatistics, Epidemiology and Informatics (IMBEI) at the 
University Medical Center of the Johannes Gutenberg University 
Mainz, 2020).

9.	 Clarke, M. et al. Infant high-grade gliomas comprise multiple 
subgroups characterized by novel targetable gene fusions and 
favorable outcomes. Cancer Discov. 10, 942–963 (2020).

10.	 Guerreiro Stucklin, A. S. et al. Alterations in ALK/ROS1/NTRK/MET 
drive a group of infantile hemispheric gliomas. Nat. Commun. 10, 
4343 (2019).

11.	 Lambo, S. et al. The molecular landscape of ETMR at diagnosis 
and relapse. Nature 576, 274–280 (2019).

12.	 Alhalabi, K. T. et al. PATZ1 fusions define a novel molecularly 
distinct neuroepithelial tumor entity with a broad histological 
spectrum. Acta Neuropathol. 142, 841–857 (2021).

13.	 Sievers, P. et al. Recurrent fusions in PLAGL1 define a distinct 
subset of pediatric-type supratentorial neuroepithelial tumors. 
Acta Neuropathol. 142, 827–839 (2021).

14.	 Stichel, D. et al. Routine RNA sequencing of formalin-fixed 
paraffin-embedded specimens in neuropathology diagnostics 
identifies diagnostically and therapeutically relevant gene 
fusions. Acta Neuropathol. 138, 827–835 (2019).

15.	 Gröbner, S. N. et al. The landscape of genomic alterations across 
childhood cancers. Nature 555, 321–327 (2018).

16.	 Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define 
distinct epigenetic and biological subgroups of glioblastoma. 
Cancer Cell 22, 425–437 (2012).

17.	 Pajtler, K. W. et al. Molecular classification of ependymal tumors 
across all CNS compartments, histopathological grades, and age 
groups. Cancer Cell 27, 728–743 (2015).

18.	 Sturm, D. et al. New brain tumor entities emerge from molecular 
classification of CNS-PNETs. Cell 164, 1060–1072 (2016).

19.	 Cavalli, F. M. G. et al. Intertumoral heterogeneity within 
medulloblastoma subgroups. Cancer Cell 31, 737–754 (2017).

20.	 Deng, M. Y. et al. Diffuse glioneuronal tumour with 
oligodendroglioma-like features and nuclear clusters 
(DGONC)—a molecularly defined glioneuronal CNS tumour class 
displaying recurrent monosomy 14. Neuropathol. Appl. Neurobiol. 
46, 422–430 (2020).

21.	 Reinhardt, A. et al. Anaplastic astrocytoma with piloid features, 
a novel molecular class of IDH wildtype glioma with recurrent 
MAPK pathway, CDKN2A/B and ATRX alterations. Acta 
Neuropathol. 136, 273–291 (2018).

22.	 Wefers, A. K. et al. Isomorphic diffuse glioma is a morphologically 
and molecularly distinct tumour entity with recurrent gene 
fusions of MYBL1 or MYB and a benign disease course. Acta 
Neuropathol. 139, 193–209 (2020).

23.	 Sievers, P. et al. Epigenetic profiling reveals a subset of 
pediatric-type glioneuronal tumors characterized by oncogenic 
gene fusions involving several targetable kinases. Acta 
Neuropathol. 144, 1049–1052 (2022).

24.	 Louis, D. N. et al. The 2021 WHO Classification of Tumors  
of the Central Nervous System: a summary. Neuro Oncol. 23, 
1231–1251 (2021).

25.	 Capper, D. et al. Practical implementation of DNA methylation 
and copy-number-based CNS tumor diagnostics: the Heidelberg 
experience. Acta Neuropathol. 136, 181–210 (2018).

26.	 Sievers, P. et al. A subset of pediatric-type thalamic gliomas share 
a distinct DNA methylation profile, H3K27me3 loss and frequent 
alteration of EGFR. Neuro Oncol. 23, 34–43 (2021).

27.	 Bouffet, E. et al. Primary analysis of a phase II trial of dabrafenib 
plus trametinib (dab + tram) in BRAFV600–mutant pediatric 
low-grade glioma (pLGG). J. Clin. Oncol. 40, LBA2002 (2022).

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-023-02255-1
https://publications.iarc.fr/601


Nature Medicine | Volume 29 | April 2023 | 917–926 925

Article https://doi.org/10.1038/s41591-023-02255-1

28.	 Hargrave, D. R. et al. Dabrafenib + trametinib (dab + tram) in 
relapsed/refractory (r/r) BRAFV600–mutant pediatric high-grade 
glioma (pHGG): primary analysis of a phase II trial. J. Clin. Oncol. 
40, 2009 (2022).

29.	 Farouk Sait, S. et al. Debio1347, an oral FGFR inhibitor: results 
from a single-center study in pediatric patients with recurrent 
or refractory FGFR-altered gliomas. JCO Precis. Oncol. 5, 
PO.20.00444 (2021).

30.	 Bagchi, A. et al. Lorlatinib in a child with ALK-fusion-positive 
high-grade glioma. N. Engl. J. Med. 385, 761–763 (2021).

31.	 Desai, A. V. et al. Entrectinib in children and young adults  
with solid or primary CNS tumors harboring NTRK, ROS1,  
or ALK aberrations (STARTRK-NG). Neuro Oncol. 24,  
1776–1789 (2022).

32.	 Doz, F. et al. Efficacy and safety of larotrectinib in TRK 
fusion-positive primary central nervous system tumors. Neuro 
Oncol. 24, 997–1007 (2022).

33.	 Jongmans, M. C. et al. Recognition of genetic predisposition in 
pediatric cancer patients: an easy-to-use selection tool. Eur. J. 
Med. Genet. 59, 116–125 (2016).

34.	 Ripperger, T. et al. Childhood cancer predisposition 
syndromes—a concise review and recommendations by  
the Cancer Predisposition Working Group of the Society for 
Pediatric Oncology and Hematology. Am. J. Med. Genet. A 173, 
1017–1037 (2017).

35.	 van Tilburg, C. M. et al. The Pediatric Precision Oncology  
INFORM Registry: clinical outcome and benefit for patients  
with very high-evidence targets. Cancer Discov. 11, 2764–2779 
(2021).

36.	 Ecker, J. et al. Molecular diagnostics enables detection of 
actionable targets: the Pediatric Targeted Therapy 2.0 registry. 
Eur. J. Cancer 180, 71–84 (2022).

37.	 Thariat, J. et al. Avoidance or adaptation of radiotherapy in 
patients with cancer with Li–Fraumeni and heritable TP53-related 
cancer syndromes. Lancet Oncol. 22, e562–e574 (2021).

38.	 Das, A. et al. Genomic predictors of response to PD-1 inhibition 
in children with germline DNA replication repair deficiency. Nat. 
Med. 28, 125–135 (2022).

39.	 Rittberg, R. et al. Immune checkpoint inhibition as primary 
adjuvant therapy for an IDH1-mutant anaplastic astrocytoma in a 
patient with CMMRD: a case report—usage of immune checkpoint 
inhibition in CMMRD. Curr. Oncol. 28, 757–766 (2021).

40.	 Suwala, A. K. et al. Primary mismatch repair deficient IDH-mutant 
astrocytoma (PMMRDIA) is a distinct type with a poor prognosis. 
Acta Neuropathol. 141, 85–100 (2021).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

1Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany. 2Division of Pediatric Glioma Research, German Cancer Research Center 
(DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany. 3Department of Pediatric Oncology, Hematology & Immunology, Heidelberg 
University Hospital, Heidelberg, Germany. 4Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität 
Berlin and Humboldt-Universität zu Berlin, Berlin, Germany. 5German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center 
(DKFZ), Heidelberg, Germany. 6Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany. 7Laboratory 
of Neuropathology, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Brazil. 8D’Or Institute for Research and Education (IDOR), Rio de Janeiro, 
Brazil. 9Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany. 10Department of Neuropathology, Heidelberg University Hospital, 
Heidelberg, Germany. 11Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 12Clinical Cooperation Unit 
Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany. 13Department of Neurological 
Surgery, Helen Diller Research Center, University of California, San Francisco, San Francisco, CA, USA. 14Division of Pediatric Neurooncology, German 
Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany. 15Department of Pediatric Oncology, Dana-Farber Cancer 
Institute, Boston, MA, USA. 16Broad Institute of MIT and Harvard, Cambridge, MA, USA. 17Omics IT and Data Management Core Facility, German Cancer 
Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany. 18Department of Diagnostic and Interventional Neuroradiology, 
University Hospital of Würzburg, Würzburg, Germany. 19Neuroradiological Reference Center for the Pediatric Brain Tumor (HIT) Studies of the German 
Society of Pediatric Oncology and Hematology, University Hospital Würzburg, since 2021 University Hospital Augsburg, Augsburg, Germany. 20Diagnostic 

Dominik Sturm    1,2,3, David Capper    4,5, Felipe Andreiuolo    6,7,8, Marco Gessi6, Christian Kölsche    9, 
Annekathrin Reinhardt10, Philipp Sievers    10, Annika K. Wefers    11, Azadeh Ebrahimi    6,10,12, Abigail K. Suwala10,12,13, 
Gerrit H. Gielen    6, Martin Sill1,14, Daniel Schrimpf10, Damian Stichel10,12, Volker Hovestadt15,16, Bjarne Daenekas    4,15,16, 
Agata Rode1,2, Stefan Hamelmann10,12, Christopher Previti1,14, Natalie Jäger1,14, Ivo Buchhalter17, Mirjam Blattner-Johnson1,2, 
Barbara C. Jones1,2,3, Monika Warmuth-Metz18,19, Brigitte Bison19,20, Kerstin Grund21, Christian Sutter21, Steffen Hirsch1,14,21, 
Nicola Dikow21, Martin Hasselblatt22, Ulrich Schüller    11,23,24, Nicolas U. Gerber25, Christine L. White    26,27,28, 
Molly K. Buntine26,27, Kathryn Kinross29, Elizabeth M. Algar    26,27,30, Jordan R. Hansford    31, Nicholas G. Gottardo    32,33,34, 
Pablo Hernáiz Driever    35, Astrid Gnekow    36, Olaf Witt1,3,37, Hermann L. Müller    38, Gabriele Calaminus39, 
Gudrun Fleischhack    40, Uwe Kordes    23, Martin Mynarek    23,41, Stefan Rutkowski23, Michael C. Frühwald    36, 
Christof M. Kramm    42, Andreas von Deimling    10,12, Torsten Pietsch6,43, Felix Sahm1,10,12,43, Stefan M. Pfister1,3,14,43 & 
David. T. W. Jones    1,2,43 

http://www.nature.com/naturemedicine
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-0250-1696
http://orcid.org/0000-0003-1945-497X
http://orcid.org/0000-0002-2568-6155
http://orcid.org/0000-0001-8763-8864
http://orcid.org/0000-0003-3237-6021
http://orcid.org/0000-0001-9394-8519
http://orcid.org/0000-0001-7354-1746
http://orcid.org/0000-0002-2707-0290
http://orcid.org/0000-0002-0237-8694
http://orcid.org/0000-0002-8731-1121
http://orcid.org/0000-0002-5920-0029
http://orcid.org/0000-0002-9875-8092
http://orcid.org/0000-0001-7733-383X
http://orcid.org/0000-0002-1082-6776
http://orcid.org/0000-0003-3135-3872
http://orcid.org/0000-0002-7356-6887
http://orcid.org/0000-0003-4929-9966
http://orcid.org/0000-0001-5714-007X
http://orcid.org/0000-0001-6375-2320
http://orcid.org/0000-0003-3302-2719
http://orcid.org/0000-0002-8237-1854
http://orcid.org/0000-0002-5017-926X
http://orcid.org/0000-0002-5863-540X
http://orcid.org/0000-0002-2036-5141


Nature Medicine | Volume 29 | April 2023 | 917–926 926

Article https://doi.org/10.1038/s41591-023-02255-1

and Interventional Neuroradiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany. 21Institute of Human Genetics, Heidelberg 
University Hospital, Heidelberg, Germany. 22Institute of Neuropathology, University Hospital Münster, Münster, Germany. 23Department of Paediatric 
Haematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 24Research Institute Children’s Cancer Center 
Hamburg, Hamburg, Germany. 25Department of Oncology, University Children’s Hospital Zürich, Zürich, Switzerland. 26Genetics and Molecular Pathology 
Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia. 27Department of Molecular and Translational Science, Monash University, 
Melbourne, VIC, Australia. 28Victorian Clinical Genetics Services, Parkville, VIC, Australia. 29Australian and New Zealand Children’s Haematology and 
Oncology Group (ANZCHOG), Hudson Institute of Medical Research, Clayton, VIC, Australia. 30Department of Paediatrics, University of Melbourne, 
Parkville, VIC, Australia. 31Women’s and Children’s Hospital, South Australia Health and Medical Research Institute, South Australia immunoGENomics 
Cancer Institute, University of Adelaide, Adelaide, SA, Australia. 32Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s 
Hospital, Nedlands, WA, Australia. 33Centre for Child Health Research, University of Western Australia, Nedlands, WA, Australia. 34Brain Tumour Research 
Program, Telethon Kids Institute, Nedlands, WA, Australia. 35German HIT-LOGGIC Registry for low-grade glioma in children and adolescents, Department 
of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu 
Berlin, Berlin, Germany. 36Swabian Children’s Cancer Center, Paediatric and Adolescent Medicine, Faculty of Medicine, University Augsburg, Augsburg, 
Germany. 37Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, 
Germany. 38Department of Pediatrics and Pediatric Hematology/Oncology, University Children’s Hospital, Klinikum Oldenburg AöR, Oldenburg, Germany. 
39Department of Pediatric Hematology and Oncology, University Childrens’ Hospital Muenster, Muenster, Germany. 40Pediatric Hematology and 
Oncology, Pediatrics III, University Children’s Hospital of Essen, Essen, Germany. 41Mildred Scheel Cancer Career Center HaTriCS4, University Medical 
Center Hamburg-Eppendorf, Hamburg, Germany. 42Department of Child and Adolescent Health, Division of Pediatric Hematology and Oncology, 
University Medical Center Göttingen, Göttingen, Germany. 43These authors jointly supervised this work: Torsten Pietsch, Felix Sahm, Stefan M. Pfister, 
David. T. W. Jones.  e-mail: david.jones@kitz-heidelberg.de

http://www.nature.com/naturemedicine
mailto:david.jones@kitz-heidelberg.de


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02255-1

Methods
Patient population, samples and clinical data collection
Patients were recruited between April 2015 and March 2019 from child-
hood cancer centers cooperating within the German Society for Pedi-
atric Oncology/Hematology (GPOH), the Swiss Paediatric Oncology 
Group (SPOG) and the Australian & New Zealand Children’s Haema-
tology/Oncology Group (ANZCHOG) in accordance with ethics board 
approval from the ethics committee of the Medical Faculty Heidelberg 
as well as local institutes. Patient sex and/or gender were not considered 
in the design of the study. Inclusion criteria comprised age ≤21 years 
at primary diagnosis of a CNS neoplasm and availability of FFPE tumor 
tissue. FFPE tumor tissue for reference neuropathological assessment 
and patient blood samples were collected at the Brain Tumor Reference 
Center (HTRZ) of the German Society for Neuropathology and Neuro-
anatomy (DGNN; Department of Neuropathology, Bonn, Germany). 
FFPE tumor tissue and patient blood samples were forwarded to the 
Clinical Cooperation Unit Neuropathology at the German Cancer 
Research Center (DKFZ) for molecular analyses in accordance with 
research ethics board approval of the University of Heidelberg. Clinical 
patient data were collected at the DKFZ through national study head-
quarters of the German HIT network of the GPOH, SPOG and ANZCHOG, 
using standardized case report forms within the framework of clinical 
trials. Evidence or clinical signs of cancer predisposition were reported 
to national study headquarters by local participating centers as part 
of those case report forms but not reviewed. Additional clinical data 
from 84 patients with WHO-defined HGG were obtained by reviewing 
primary records provided by local treating centers. Patient sex was 
determined by physical examination by the treating physician respon-
sible for patient registration. No disaggregated information on patient 
sex and gender was collected in this study.

Informed consent
The MNP 2.0 study complies with the principles of the Declaration of 
Helsinki in its current version. Informed consent from adult patients 
or parental consent was obtained for all patients before enrollment. 
As part of consenting, patients or parents decided if they wanted to be 
informed about constitutional variants indicative of a CPS (890/935, 
95.2%) or not (45/935, 4.8%). In cases for which this decision was not 
forwarded upon registration (269/1,204, 22.3%) and sequencing data 
were available (157/1,034, 15.2%), information on constitutional vari-
ants was not reported to treating physicians, but pseudonymized data 
were included in further aggregated analyses presented here, as part 
of the approved protocol. Only constitutional variants considered 
pathogenic or likely pathogenic were reported (see below).

CNS tumor nomenclature
To conform with the 2021 WHO Classification of Tumors of the CNS, 
the term ‘type’ is used for specific diagnoses recognized by the WHO 
(termed ‘entity’ in previous editions; for example, ‘pilocytic astrocy-
toma’), and the term ‘subtype’ is used for subgroups thereof (termed 
‘variant’ in previous editions)2,24. Multiple CNS tumor types are grouped 
into ‘categories’ (for example, ‘low-grade glioma’). To conform with 
the 2021 WHO Classification of Tumors of the CNS, WHO tumor grades 
are expressed in Arabic numerals even though based on previous edi-
tions1,41. For DNA methylation-based classification, the term ‘class’ 
refers to a distinct DNA methylation class4 (for example, ‘pilocytic 
astrocytoma, posterior fossa’), and multiple classes are grouped into 
‘categories’ corresponding to the category level of WHO-based tumor 
types. A hierarchy of ‘subclasses’, ‘classes’, ‘class families’ and ‘super-
families’ was introduced in version 12.5 of the DNA methylation-based 
CNS tumor classification algorithm.

Color coding
Palettes of optimally distinct colors for CNS tumor categories and 
types/classes (as depicted in Extended Data Fig. 1) were generated 

and refined using I want hue developed by Mathieu Jacomy at the 
Sciences-Po Medialab (http://medialab.github.io/iwanthue) and Graph-
ical User Interface to Pick Colors in HCL Space by Claus O. Wilke, Reto 
Stauffer and Achim Zeileis (http://hclwizard.org:3000/hclcolorpicker). 
Corresponding DNA methylation classes and WHO-based diagnoses 
share the same color hue; overlapping DNA methylation classes and 
WHO-based diagnoses share shades of the same color hue (that is, dif-
ferent luminance). DNA methylation classes and WHO-based diagnoses 
from the same tumor category share a similar color hue spectrum.

Reference neuropathological evaluation
Central reference neuropathological evaluation was performed at 
the HTRZ (Department of Neuropathology, Bonn, Germany) accord-
ing to the criteria defined by the respective applicable version of the 
WHO classification at the time of diagnosis—that is, 4th (2015–2016) 
and revised 4th (2016–2019) editions1,41. Diagnostic workup included 
conventional stainings such as hematoxilin & eosin staining and silver 
impreganation, immunohistochemical analysis of differentiation, 
cell lineage and proliferation markers and for mutant proteins as well 
as molecular pathological assays where appropriate for reaching a 
WHO-conform diagnosis. Tumor tissue from 21 of 707 patients (3.0%; 
recorded until 15 February 2018) was sufficient only for reference 
neuropathological assessment.

Molecular genetic analyses
Per protocol, ten unstained sections of FFPE tissue were requested for 
molecular genetic analyses. In 980 of 1,161 cases with detailed documen-
tation (84%), a complete set of one HE-stained section, three sections 
at 4 µm and ten sections at 10 µm or an FFPE tissue block were available 
(Supplementary Table 1). In 1,093 of 1,161 cases (94%), a minimum of ten 
sections at 10 µm were available. Testing also proceeded if fewer than ten 
sections at 10 µm (range: 2–9 sections; median: six sections) were avail-
able (59/1,161, 5%). In 11 of 1,161 cases (1%), DNA extracted at the stage of 
reference neuropathological evaluation was provided. Although aiming 
to extract DNA from tissue areas with more than 70% tumor cell content, 
this was not a prerequisite for molecular genetic analyses.

Nucleic acid extraction, DNA methylation and copy number analy-
sis using the Infinium HumanMethylation450 (n = 187) and Methylatio-
nEPIC (n = 937) BeadChip arrays (Illumina) and tumor/constitutional 
DNA sequencing using a customized enrichment/hybrid-capture-based 
NGS gene panel were performed at the Department of Neuropathol-
ogy, Heidelberg University Hospital, as previously described3,4. The 
NGS panel comprised the entire coding (all exons ±25 bp) and selected 
intronic and promoter regions of 130 genes (Supplementary Table 5) 
and was designed to detect single-nucleotide variants (SNVs), small 
insertions/deletions (InDels), exonic re-arrangements and recur-
rent fusion events. For selected samples (n = 41), RNA sequencing 
was performed as previously described14. Selection criteria for RNA 
sequencing included indications for fusion events inferred by targeted 
DNA sequencing or copy number data derived from DNA methylation 
arrays, assignment to DNA methylation classes known to be asso-
ciated with fusion events (such as infantile hemispheric gliomas or 
MYB/MYBL1-altered LGGs) and unclassifiable tumors in which RNA 
sequencing was deemed potentially informative.

NGS data were processed and analyzed as previously described3,14. 
In addition to automated SNV and InDel calling, hotspots in BRAF, 
H3F3A, IDH1, BCOR and FGFR1 were manually screened for alterations 
using the Integrative Genomics Viewer (IGV)42. Tumor mutational 
burden was calculated as the total number of somatic SNVs and InDels 
per Mb of investigated genomic sequence (including synonymous 
SNV and hotspot mutations). NGS data were not analyzed for copy 
number variations. Relevant constitutional alterations identified by 
NGS of leukocyte-derived DNA were technically validated by Sanger 
sequencing at the Institute of Human Genetics at Heidelberg University 
Hospital. Constitutional alterations in a predefined list of 47 known 
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cancer predisposition genes included in the gene panel (Supplemen-
tary Table 7) were assessed by human geneticists according to American 
College of Medical Genetics and Genomics (ACMG) criteria43, and only 
likely pathogenic (ACMG class 4) or pathogenic (ACMG class 5) variants 
were reported to the treating physician, and genetic counseling of the 
patient and the family was recommended.

DNA methylation-based classification of tumor samples was per-
formed using an RF classifying algorithm as published previously4, 
using, in each case, the latest applicable CNS tumor classifier version 
at the time of diagnosis—that is, version 9.0 (2015; n = 64), version 
11.0 (2015–2016; n = 95), version 11b2 (2016–2017; n = 325), version 
11b4 (2017–2019; n = 658) and version 12.5 (applied for aggregated 
re-analysis of all 1,124 tumors as depicted in Extended Data Fig. 10) 
(https://www.molecularneuropathology.org/mnp/). In version 9.0, a 
tumor was assigned to a DNA methylation class if its raw RF-based class 
prediction score was within the interquartile range of class prediction 
scores of the respective reference class. After the introduction of score 
calibration (version 11.0), a DNA methylation class was assigned to a 
sample when its calibrated class prediction score reached the threshold 
of ≥0.9 for a reference class4. t-SNE analysis of DNA methylation data 
from the study cohort was performed alongside 89 published reference 
DNA methylation classes4 after removal of five duplicate samples from 
the reference cohort. DNA methylation data from 208 of 1,124 samples 
in this study cohort were part of the reference cohort used to train ver-
sion version 12.5 of the RF classifying algorithm.

Discrepancies between WHO tumor type and DNA methylation 
class were considered clinically relevant if the diagnosis according 
to DNA methylation-based classification would have affected clini-
cal patient management by changing the recommended treatment 
protocol and, therefore, (1) applying or omitting chemotherapy, (2) 
applying or omitting radiotherapy or (3) applying a different chemo-
therapy regimen. Recommendations for clinical patient management 
were based on phase 3 clinical trial protocols endorsed by the brain 
tumor ‘Treatment Network HIT’ of the GPOH between 2015 and 2019.

Cancer cell fraction and tumor purity were predicted in silico 
from DNA methylation data by deconvolution of tumor composi-
tion (MethylCIBERSORT)44 and RF-based tumor purity prediction 
(RF_Purify)45, respectively (Supplementary Fig. 17). There was a direct 
correlation between the two methods (Pearson correlation: 0.86), but 
neither of the two estimates for tumor cell content correlated with RF 
class prediction scores (using version 11b4 across the entire cohort). 
Lower tumor cell content was predominantly observed in LGG but did 
not seem to necessarily impair class prediction. Overlaying estimated 
tumor cell content with t-SNE analyses showed a clear tendency for 
tumors with lower tumor cell content to cluster together and in close 
proximity of the non-neoplastic reference DNA methylation class 
‘Control tissue, reactive tumor microenvironment’.

Enhanced copy number variation analysis using Illumina DNA 
methylation arrays was performed using the R package conumee46. 
DNA copy number state of the genomic locus containing CDKN2A/B in 
BRAF V600E-positive and BRAF fusion-positive tumors was assessed 
by visual inspection of resulting segmented copy number data using 
IGV42. Summary copy number plots to display rates of copy number 
gains and losses per DNA methylation class with a minimum sample 
size of five were generated using an in-house R script (https://github. 
com/dstichel/CNsummaryplots). GISTIC2.0 (version 2.0.23) analyses 
were performed to identify genes targeted by somatic copy number 
variations per DNA methylation class with a minimum sample size of 
five via the online platform GenePattern (https://www.genepattern. 
org/) using default settings47. All other computational analyses were 
performed using the programming language R (ref. 48).

Sample processing timelines
Total processing time from operation to reporting of molecular results 
ranged from 30 days to 290 days (median 77 days, excluding 79 patients 

registered >100 days after operation) (Supplementary Fig. 3a). Most 
time was consumed for patient registration (median 14 days; range 
0–95 days) and data generation (median 18 days; range 5–59 days, with 
DNA methylation analyses completed before patient registration as 
part of local neuropathological diagnostics in seven cases). There was 
no considerable change in sample processing times throughout the 
recruitment period, but there was a trend toward earlier patient regis-
tration in centers with higher recruitment (Supplementary Fig. 3b,c).

Interdisciplinary tumor board discussion
Interdisciplinary tumor board discussions of cases with divergent refer-
ence neuropathological and molecular classification were held with a 
maximum of four cases per week. Discussions included participants 
from the DKFZ (Division of Pediatric Neurooncology), Heidelberg 
University Hospital (Department of Neuropathology), the Brain Tumor 
Reference Center (Bonn, Germany) and the Neuroradiology Reference 
Center (Würzburg/Augsburg, Germany). Participation of local pedi-
atric oncologists and neuropathologists and representatives of the 
GPOH/SPOG/ANZCHOG study centers was encouraged but optional.

In cases with discrepant findings, results of DNA methylation 
analysis and gene panel sequencing were initially forwarded only to 
treating physicians after interdisciplinary tumor board discussion 
and included a summary of the tumor board consensus. In April 2016, 
the study protocol was amended, and molecular results were provided 
immediately with a caveat that the report was considered preliminary 
until tumor board discussion; a final report including the tumor board 
consensus was issued thereafter.

Risk stratification of patients with HGG
Patients with HGGs (WHO grade 3–4) diagnosed by reference neuro-
pathological evaluation according to the criteria of the WHO classifi-
cation of tumors of the CNS were assigned to molecular risk groups 
based on the following molecular criteria. High risk: DNA methylation 
classes of HGG, G34; DMG, K27; HGG, MYCN; HGG, midline; HGG, RTK; 
in tumors unclassifiable by RF-based DNA methylation class prediction 
or without DNA methylation data: presence of an H3 K27M (n = 1) or H3 
G34R/V (n = 1) mutation. Intermediate risk: DNA methylation classes 
of A, IDH; HGG, IDH; O, IDH; aPA; PXA; IHG; CNS NB, FOXR2; in tumors 
unclassifiable by RF-based DNA methylation class prediction: presence 
of an IDH1/2 R132H mutation (n = 7); presence of a fusion involving ALK 
(n = 4), NTRK (n = 2), ROS1 (n = 1) or MET (n = 1); co-occurrence of BRAF 
V600E mutation and CDKN2A/B homozygous deletion (n = 2). Low risk: 
DNA methylation classes of PA, PF; PA, midline; PA/GG, hemispheric; LGG, 
MYB/MYBL1; GG; DLGNT; in tumors with low tumor cell content unclas-
sifiable by RF-based DNA methylation class prediction or without DNA 
methylation data: presence of a BRAF fusion (n = 16); presence of a BRAF 
V600E mutation in absence of a CDKN2A/B deletion (n = 24). Unknown 
risk: DNA methylation class of non-neoplastic control tissue or pattern 
unclassifiable in absence of abovementioned alterations. Not assessed: 
DNA methylation analysis not performed, targeted gene panel sequenc-
ing not performed or without detection of abovementioned alterations. 
By t-SNE-based DNA methylation class assignment, molecular high-risk 
HGG additionally included HGG of the posterior fossa. Intermediate-risk 
HGG additionally included DGONC20. Low-risk HGG additionally included 
LGG, not otherwise specified (NOS). Tumors with t-SNE-based assign-
ment to novel DNA methylation classes with unknown clinical behavior, 
such as tumors with PATZ1 fusions12 or PLAGL1 fusions13, were excluded.

Statistical analysis of molecular and clinical data
Correlation between classification into individual WHO-based tumor 
types and DNA methylation-based tumor classes was tested by calcu-
lating the phi coefficient between a sample × WHO type and a sam-
ple × DNA methylation class matrix. The distribution of discrepant 
constellations between WHO-based tumor type and DNA methylation 
class among tumor categories was tested using a Fisher’s exact test. 
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Kaplan–Meier analysis was performed to estimate the survival time 
of patients from different CNS tumor groups, and a log-rank test was 
performed to compare survival distributions between independent 
groups. Pairwise comparisons between groups were corrected for mul-
tiple testing using the Benjamini–Hochberg method. OS was defined as 
time from date of initial diagnosis until death of any cause. Surviving 
patients were censored at the date of last follow-up. Event-free survival 
was calculated from date of diagnosis until event, defined as relapse 
after complete resection, clinical or radiological progression, start of 
non-surgical/adjuvant therapy or death of any cause. Patients without 
event were censored at the date of last follow-up. Data visualization and 
statistical analyses were performed using the programming language R 
(ref. 48). Tumor location was visualized for DNA methylation classes with 
a minimum sample size of five by adapting an R package for anatomical 
visualization of spatiotemporal brain data49.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
DNA methylation data generated during this study have been depos-
ited in the National Center for Biotechnology Informationʼs Gene 
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under acces-
sion number GSE215240. DNA methylation data used as a reference4 
have been deposited under accession number GSE90496. Targeted 
next-generation DNA sequencing data have been deposited at the 
European Genome-phenome Archive (http://www.ebi.ac.uk/ega/) 
under accession number EGAS00001006680. Access can be requested 
from the Data Access Committee and is linked to a data access agree-
ment. All source data to replicate our results are provided within sup-
plementary tables.

Code availability
The R package conumee used for enhanced copy number variation 
analysis using Illumina DNA methylation arrays is available at Bio-
conductor (https://bioconductor.org/packages/release/bioc/html/ 
conumee.html). The R script used to display rates of copy number 
gains and losses per DNA methylation class is available at https:// 
github.com/dstichel/CNsummaryplots. GISTIC2.0 to identify genes 
targeted by somatic copy number variations per DNA methylation is 
accessible via GenePattern (https://www.genepattern.org/modules/ 
docs/GISTIC_2.0). The R package cerebroViz adapted for visualiza-
tion of tumor location is available at https://github.com/ethanbahl/ 
cerebroViz. The code underlying the random forest-based algorithm 
for DNA methylation-based CNS tumor classification was previously 
described4 and is available at https://github.com/mwsill/mnp_training.
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Extended Data Fig. 1 | Tumor class and type color legend and abbreviations. 
a, DNA methylation classes, abbreviations and colors used for representation 
in this article. b, WHO-based diagnoses, abbreviations and colors used for 
representation in this article. Corresponding DNA methylation classes and  

WHO-based diagnoses share the same color hue; overlapping DNA methylation 
classes and WHO-based diagnoses share shades of the same color hue. DNA 
methylation classes and WHO-based diagnoses from the same tumor category 
share a similar color hue spectrum.

http://www.nature.com/naturemedicine
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Extended Data Fig. 2 | Clinical patient characteristics. Patient age (combined 
scattered and boxplots, upper panel) and sex (stacked bar charts, lower panel) 
across WHO-based diagnoses (a) and DNA methylation classes (b). Each tumor is 
represented by a circle indicating assigned WHO-based tumor type (outline) and 
DNA methylation class (fill), and colors correspond to tumor types and classes as 

indicated in Fig. 1 and Extended Data Fig. 1. Numbers in brackets indicate tumors 
per tumor class or type with available data. Center line, median; box limits, upper 
and lower quartiles; whiskers, 1.5 x interquartile range. F, female; M, male. See 
Supplementary Table 1 for underlying data.

http://www.nature.com/naturemedicine
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Extended Data Fig. 3 | Tumor location by DNA methylation class. Heatmap 
representation of tumor location by DNA methylation class for classes with ≥ 
five samples. Numbers in brackets indicate tumors with available data. Color 

scales indicate the fraction of tumors affecting an anatomical region, and colors 
correspond to tumor types and classes as indicated in Fig. 1 and Extended Data 
Fig. 1. See Supplementary Table 1 for underlying data.
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Extended Data Fig. 4 | Significant regions of DNA copy number alterations 
by DNA methylation class. Plots show the q-values (x-axes, indicating the false 
discovery rate) determined by GISTIC2.0 with respect to significant lost (blue) 
and gained (red) genomic regions among the human chromosomes 1 to 22 (hg19) 
in DNA methylation classes ‘infantile hemispheric glioma’ (a), ‘pleomorphic 
xanthoastrocytoma’ (b), ‘embryonal tumor with multilayered rosettes’ (ETMR, 

c), ‘low-grade glioma, MYB/MYBL1-altered’ (d), ‘high-grade glioma, MYCN’ (e), 
and ‘high-grade glioma, pediatric RTK’ (f). Numbers in brackets indicate sample 
size for each class. Green lines indicate the significance threshold of q-value < 
0.25. The cytobands of significantly altered regions are denoted on the y-axes. 
See Supplementary Table 2 for a detailed overview of significantly amplified/
deleted regions across all DNA methylation classes.
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Extended Data Fig. 5 | Comparison of WHO-based and DNA methylation-
based tumor classification. Comparison of assigned DNA methylation classes 
(left semicircle) and WHO-based tumor types (right semicircle) across low-grade 
gliomas (LGG, a), medulloblastomas (MB, b), ependymal tumors (EPN, c), 
embryonal/pineal tumors (EMB/PIN, d), other types (e), and samples with a 

descriptive diagnosis or non-neoplastic tissue (f). Colors correspond to tumor 
types and classes as indicated in Fig. 1 and Extended Data Fig. 1. Categories 
in a–f are composed by WHO-based tumor type; see Supplementary Fig. 6 
for composition by DNA methylation class. See Supplementary Table 1 for 
underlying data.

http://www.nature.com/naturemedicine
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Extended Data Fig. 6 | Correlation between DNA methylation-based and 
WHO-based CNS tumor classification. Correlation between DNA methylation-
based and WHO-based CNS tumor classification. Phi correlation coefficient 
between DNA methylation-based classes and WHO-based tumor types is 
represented by a color scale as indicated. Numbers in brackets indicate the 

number of tumors per tumor type/class. Only correlations with a P-value < 0.01 
are displayed; see Supplementary Fig. 7 for all possible correlations between DNA 
methylation classes and WHO-based tumor types. See Supplementary Table 1 and 
Supplementary Table 3 for underlying data.

http://www.nature.com/naturemedicine
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Extended Data Fig. 7 | Overview of somatic alterations. a, Number of 
detected somatic alterations per gene colored by alteration type as indicated. 
b, Number of altered tumors per gene colored by DNA methylation class. c, 
Tumor mutational burden (combined scattered and boxplots) per individual 
tumor grouped by DNA methylation class. Each tumor is represented by a circle 

indicating assigned WHO-based tumor type (outline) and DNA methylation class 
(fill). Numbers in brackets indicate tumors with available sequencing data. Colors 
in (b) and (c) correspond to tumor classes as indicated in Fig. 1 and Extended Data 
Fig. 1. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5 x 
interquartile range. See Supplementary Table 6 for underlying data.

http://www.nature.com/naturemedicine
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Extended Data Fig. 8 | Overview of constitutional alterations. a, Number of 
detected pathogenic constitutional alterations per gene colored by alteration 
type as indicated. b, Relative fraction of patients with pathogenic constitutional 
variants per DNA methylation class. Numbers in brackets indicate tumors 
with available sequencing data. Only DNA methylation classes with available 
sequencing data for ≥ 3 cases are displayed. The dashed line indicates the fraction 

of patients with constitutional pathogenic variants across the entire cohort (at 
0.98). c and d, Number of pathogenic constitutional variants per gene colored by 
random forest (RF)-based DNA methylation class prediction (c) and t-SNE-based 
DNA methylation class assignment (d). Colors in (b–d) correspond to tumor 
classes as indicated in Fig. 1 and Extended Data Fig. 1. See Supplementary Table 6 
for underlying data.

http://www.nature.com/naturemedicine
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Extended Data Fig. 9 | Tumor board discussions of cases with discrepant 
classification. Details of tumor board discussions of tumors with discrepant 
classification by random forest (RF)-based and t-SNE-based DNA methylation 
class assignment (as in Fig. 3c and Supplementary Fig. 8; upper two rows) and 
WHO-based tumor type (third row). Colors in rows 1–3 correspond to tumor 
types and classes as indicated in Fig. 1 and Extended Data Fig. 1. Tumor board 

participants and availability of additional information (gene panel sequencing, 
reference radiology) is indicated by black boxes as well as compatibility with 
DNA methylation- and WHO-based tumor classification. Levels of discrepancy 
(corresponding to Fig. 3c and Supplementary Fig. 8) and tumor board consensus 
are categorized in bottom rows. See Supplementary Table 1 for underlying data.

http://www.nature.com/naturemedicine
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Extended Data Fig. 10 | Advancement of automated DNA methylation 
class prediction. Calibrated class prediction scores of random forest-based 
DNA methylation class prediction in version 11b4 and prediction scores for 
DNA methylation levels: subclasses, classes, class families, and superfamilies 
in version 12.5 (upper panel). Every line represents one tumor; light blue: 
classifiable by both versions; dark blue: classifiable by version 12.5 only; red: 

classifiable by version 11b4 only; grey: non-classifiable by both versions. Black 
violin plots represent density estimates for each version and level. Pie charts 
(lower panel) indicate the fractions of classifiable tumors (calibrated scores ≥ 0.9, 
blue) and unclassifiable tumors (calibrated scores < 0.9, grey) by each version 
and level. See Supplementary Table 1 for underlying data.

http://www.nature.com/naturemedicine
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Data collection  No commercial or open source code was used for data collection in this study. Data was collected using a custom database.

Data analysis DNA methylation-based classification of tumor samples was performed using a random forest (RF) classifying algorithm (available at https://
github.com/mwsill/mnp_training) using CNS tumor classifier versions v9.0 , v11.0, v11b2, v11b4, and v12.5 
(www.molecularneuropathology.org). Enhanced copy-number variation analysis using Illumina DNA methylation arrays was performed using 
the R package conumee (versions 1.0.0 to 1.18.0; DOI: 10.18129/B9.bioc.conumee). Summary copy-number plots to display rates of copy-
number gains and losses per DNA methylation class were generated using an in house R script (version 1.0; https://github.com/dstichel/
CNsummaryplots). GISTIC2.0 (version 2.0.23) analyses were performed to identify genes targeted by somatic copy-number variations per DNA 
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DNA methylation data generated during this study has been deposited in NCBIs Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) under accession 
number GSE215240. DNA methylation data used as a reference has been deposited under accession number GSE90496. Targeted next-generation DNA sequencing 
data has been deposited at the European Genome-phenome Archive (EGA, http://www.ebi.ac.uk/ega/) under accession number EGAS00001006680. All source data 
to replicate our results are provided within Supplementary tables.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Patient sex and/or gender were not considered in the design of the study, and patient sex was not considered in the inclusion 
criteria. Patient sex was determined by physical examination by the treating physician responsible for patient registration. No 
disaggregated information on patient sex and gender was collected in this study.

Population characteristics Patients were recruited between April 2015 and March 2019 from childhood cancer centers cooperating within the German 
Society for Pediatric Oncology/Hematology (GPOH), the Swiss Paediatric Oncology Group (SPOG), and the Australian & New 
Zealand Children’s Haematology/Oncology Group (ANZCHOG). Inclusion criteria comprised age ≤ 21 years at primary 
diagnosis of a CNS neoplasm.

Recruitment Patients were recruited by local treating pediatric oncologists after consultation of their parents/advocates. Informed 
consent from adult patients or parental consent was obtained for all patients prior to enrollment. We cannot exclude a self-
selection bias towards participants from families with an interest in or supportive of scientific research but consider it highly 
unlikely to impact our results. Participants were not compensated for their participation.

Ethics oversight Ethics committee of the medical faculty Heidelberg

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size calculation was performed. A total of > 1,000 participants was considered sufficient to identify CNS tumor types occurring at a 
frequency lower than 1%.

Data exclusions 163 patients that did not fulfill the inclusion criteria (117 recurrences, 23 retrospective registrations, 12 metastases, 11 adults) were excluded 
from the study.

Replication Technical robustness of the random forest (RF) classifying algorithm was investigated by inter-laboratory comparison. Results of two 
independent laboratories (starting from DNA extraction) were compared, and all attempts at replication were successful. See Capper et al. 
(DOI:10.1038/nature26000) for details.

Randomization There were no experimental groups or randomization in the study design.

Blinding As there was no group allocation, blinding of participants was not relevant to our study. Neuropathologists performing reference 
neuropathological evaluation and neuropathologists as well as scientists perfoming molecular analyses were blinded to the respective results 
until all analyses were completed.
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