35 research outputs found

    Palmer-Chalker correlations in the XY pyrochlore antiferromagnet Er2Sn2O7

    Full text link
    \ersn\, is considered, together with \erti, as a realization of the XY antiferromagnet on the pyrochlore lattice. We present magnetization measurements confirming that \ersn\, does not order down to 100 mK but exhibits a freezing below 200 mK. Our neutron scattering experiments evidence the strong XY character of the \er moment and point out the existence of short range correlations in which the magnetic moments are in peculiar configurations, the Palmer-Chalker states, predicted theoretically for an XY pyrochlore antiferromagnet with dipolar interactions. Our estimation of the \ersn\, parameters confirm the role of the latter interactions on top of relatively weak and isotropic exchange couplings

    Spin dynamics in the ordered spin ice Tb2_2Sn2_2O7_7

    Full text link
    Geometrical frustration is a central challenge in contemporary condensed matter physics, a crucible favourable to the emergence of novel physics. The pyrochlore magnets, with rare earth magnetic moments localized at the vertices of corner-sharing tetrahedra, play a prominent role in this field, with a rich variety of exotic ground states ranging from the "spin ices" \hoti\ and \dyti\ to the "spin liquid" and "ordered spin ice" ground states in \tbti\ and \tbsn. Inelastic neutron scattering provides valuable information for understanding the nature of these ground states, shedding light on the crystal electric field (CEF) level scheme and on the interactions between magnetic moments. We have performed such measurements with unprecedented neutron flux and energy resolution, in the "ordered spin ice" \tbsn. We argue that a new interaction, which involves the spin lattice coupling through a low temperature distortion of the trigonal crystal field, is necessary to account for the data

    Magnetisation process in Er2Ti2O7 and Tb2Ti2O7 at very low temperature

    Full text link
    We present a model which accounts for the high field magnetisation at very low temperature in two pyrochlore frustrated systems, Er2Ti2O7 and Tb2Ti2O7. The two compounds present very different ground states: Er2Ti2O7, which has a planar crystal field anisotropy, is an antiferromagnet with T_N=1.2K, whereas Tb2Ti2O7 is expected to have Ising character and shows no magnetic ordering down to 0.05K, being thus labelled a ``spin liquid''. Our model is a mean field self-consistent calculation involving the 4 rare earth sites of a tetrahedron, the building unit of the pyrochlore lattice. It includes the full crystal field hamiltonian, the infinite range dipolar interaction and anisotropic nearest neighbour exchange described by a 3-component tensor. For Er2Ti2O7, we discuss the equivalence of our treatment of the exchange tensor, taken to be diagonal in a frame linked to a rare earth - rare earth bond, with the pseudo-spin hamiltonian recently developped for Kramers doublets in a pyrochlore lattice. In Tb2Ti2O7, an essential ingredient of our model is a symmetry breaking developping at very low temperature. We compare its prediction for the isothermal magnetisation with that of ``the quantum spin ice'' model

    Antiferro-quadrupolar correlations in the quantum spin ice candidate Pr2Zr2O7

    Get PDF
    We present an experimental study of the quantum spin ice candidate pyrochlore coumpound \przr\ by means of magnetization measurements, specific heat and neutron scattering up to 12 T and down to 60 mK. When the field is applied along the [111][111] and [11ˉ0][1\bar{1}0] directions, k=0{\bf k}=0 field induced structures settle in. We find that the ordered moment rises slowly, even at very low temperature, in agreement with macroscopic magnetization. Interestingly, for H[11ˉ0]H \parallel [1\bar{1}0], the ordered moment appears on the so called α\alpha chains only. The spin excitation spectrum is essentially {\it inelastic} and consists in a broad flat mode centered at about 0.4 meV with a magnetic structure factor which resembles the spin ice pattern. For H[11ˉ0]H \parallel [1\bar{1}0] (at least up to 2.5 T), we find that a well defined mode forms from this broad response, whose energy increases with HH, in the same way as the temperature of the specific heat anomaly. We finally discuss these results in the light of mean field calculations and propose a new interpretation where quadrupolar interactions play a major role, overcoming the magnetic exchange. In this picture, the spin ice pattern appears shifted up to finite energy because of those new interactions. We then propose a range of acceptable parameters for \przr\, that allow to reproduce several experimental features observed under field. With these parameters, the actual ground state of this material would be an antiferroquadrupolar liquid with spin-ice like excitations

    Origin of the large dispersion of magnetic properties in nanostructured oxides: FexO/Fe3O4 nanoparticles as a case study

    Get PDF
    The intimate relationship in transition-metal oxides between stoichiometry and physiochemical properties makes them appealing as tunable materials. These features become exacerbated when dealing with nanostructures. However, due to the complexity of nanoscale materials, establishing a distinct relationship between structure-morphology and functionalities is often complicated. In this regard, in the FexO/Fe3O4 system a largely unexplained broad dispersion of magnetic properties has been observed. Here we show, thanks to a comprehensive multi-technique approach, a clear correlation between magneto-structural properties in large (45 nm) and small (9 nm) FexO/Fe3O4 core/shell nanoparticles that can explain the spread of magnetic behaviors. The results reveal that while the FexO core in the large nanoparticles is antiferromagnetic and has bulk-like stoichiometry and unit-cell parameters, the FexO core in the small particles is highly non-stoichiometric and strained, displaying no significant antiferromagnetism. These results highlight the importance of ample characterization to fully understand the properties of nanostructured metal oxide

    Origin of the large dispersion of magnetic properties in nanostructured oxides: FexO/Fe3O4 nanoparticles as a case study

    Get PDF
    The intimate relationship between stoichiometry and physicochemical properties in transition-metal oxides makes them appealing as tunable materials. These features become exacerbated when dealing with nanostructures. However, due to the complexity of nanoscale materials, establishing a distinct relationship between structure-morphology and functionalities is often complicated. In this regard, in the FexO/Fe3O4 system a largely unexplained broad dispersion of magnetic properties has been observed. Here we show, thanks to a comprehensive multi-technique approach, a clear correlation between the magneto-structural properties in large (45 nm) and small (9 nm) FexO/Fe3O4 core/shell nanoparticles that can explain the spread of magnetic behaviors. The results reveal that while the FexO core in the large nanoparticles is antiferromagnetic and has bulk-like stoichiometry and unit-cell parameters, the FexO core in the small particles is highly non-stoichiometric and strained, displaying no significant antiferromagnetism. These results highlight the importance of ample characterization to fully understand the properties of nanostructured metal oxides
    corecore