263 research outputs found

    Full-Length Transcriptome Analysis of Human Retina-Derived Cell Lines ARPE-19 and Y79 Using the Vector-Capping Method

    Get PDF
    PURPOSE. To collect an entire set of full-length cDNA clones derived from human retina-derived cell lines and to identify full-length transcripts for retinal preferentially expressed genes. METHODS. The full-length cDNA libraries were constructed from a retinoblastoma cell line, Y79, and a retinal pigment epithelium cell line, ARPE-19, using the vector-capping method, which generates a genuine full-length cDNA. By single-pass sequencing of the 5Ј-end of cDNA clones and subsequent mapping to the human genome, the authors determined their transcriptional start sites and annotated the cDNA clones. RESULTS. Of the 23,616 clones isolated from Y79-derived cDNA libraries, 19,229 full-length cDNA clones were identified and classified into 4808 genes, including genes of Ͼ10 kbp. Of the 7067 genes obtained from the Y79 and ARPE-19 libraries, the authors selected 72 genes that were preferentially expressed in the eye, of which 131 clones corresponding to 57 genes were fully sequenced. As a result, we discovered many variants that were produced by different transcriptional start sites, alternative splicing, and alternative polyadenylation. CONCLUSIONS. The bias-free, full-length cDNA libraries constructed using the vector-capping method were shown to be useful for collecting an entire set of full-length cDNA clones for these retinal cell lines. Full-length transcriptome analysis of these cDNA libraries revealed that there were, unexpectedly, many transcript variants for each gene, indicating that obtaining the full-length cDNA for each variant is indispensable for analyzing its function. The full-length cDNA clones (approximately 80,000 clones each for ARPE-19 and Y79) will be useful as a resource for investigating the human retina. (Invest Ophthalmol Vis Sci. 2011;52:6662-6670

    Vasculature-driven stem cell population coordinates tissue scaling in dynamic organs

    Get PDF
    Stem cell (SC) proliferation and differentiation organize tissue homeostasis. However, how SCs regulate coordinate tissue scaling in dynamic organs remain unknown. Here, we delineate SC regulations in dynamic skin. We found that interfollicular epidermal SCs (IFESCs) shape basal epidermal proliferating clusters (EPCs) in expanding abdominal epidermis of pregnant mice and proliferating plantar epidermis. EPCs consist of IFESC-derived Tbx3⁺–basal cells (Tbx3⁺-BCs) and their neighboring cells where Adam8–extracellular signal–regulated kinase signaling is activated. Clonal lineage tracing revealed that Tbx3⁺-BC clones emerge in the abdominal epidermis during pregnancy, followed by differentiation after parturition. In the plantar epidermis, Tbx3⁺-BCs are sustained as long-lived SCs to maintain EPCs invariably. We showed that Tbx3⁺-BCs are vasculature-dependent IFESCs and identified mechanical stretch as an external cue for the vasculature-driven EPC formation. Our results uncover vasculature-mediated IFESC regulations, which explain how the epidermis adjusts its size in orchestration with dermal constituents in dynamic skin

    Гомосексуальный субъект в пространстве публичного: нарративное измерение камин-аута

    Full text link
    <div><p>Background</p><p>Although <i>Helicobacter pylori</i> (<i>H</i>. <i>pylori</i>) infection is closely associated with the development of peptic ulcer, its involvement in pathophysiology in the lower intestinal tract and gastrointestinal (GI) motility remains unclear. Glucagon-like peptide-1 (GLP-1) is a gut hormone produced in the lower intestinal tract and involved in GI motility. Here, we investigated the effect of <i>H</i>. <i>pylori</i> infection on the link between GLP-1 expression and motility of the GI tract.</p><p>Methods</p><p>C57BL/6 mice were inoculated with a <i>H</i>. <i>pylori</i> strain. Twelve weeks later, the <i>H</i>. <i>pylori</i>-infected mice underwent <i>H</i>. <i>pylori</i> eradication treatment. GI tissues were obtained from the mice at various time intervals, and evaluated for the severity of gastric inflammatory cell infiltration and immunohistochemical expression of GLP-1 and PAX6 in the colonic mucosa. Gastrointestinal transit time (GITT) was measured by administration of carmine-red solution.</p><p>Results</p><p>GLP-1 was expressed in the endocrine cells of the colonic mucosa, and PAX6 immunoreactivity was co-localized in such cells. The numbers of GLP-1- and PAX6-positive cells in the colon were significantly increased at 12 weeks after <i>H</i>. <i>pylori</i> infection and showed a positive correlation with each other. The GITT was significantly longer in <i>H</i>. <i>pylori</i>-infected mice than in non-infected controls and showed a positive correlation with GLP-1 expression. When <i>H</i>. <i>pylori</i>-infected mice underwent <i>H</i>. <i>pylori</i> eradication, GITT and PAX6/GLP-1 expression did not differ significantly from those in untreated <i>H</i>. <i>pylori</i>-infected mice.</p><p>Conclusions</p><p><i>H</i>. <i>pylori</i> infection may impair GI motility by enhancing the colonic GLP-1/PAX6 expression.</p></div

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    Get PDF

    The population of merging compact binaries inferred using gravitational waves through GWTC-3

    Get PDF
    We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and 1700 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and the NSBH merger rate to be between 7.8 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 140 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 44 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from 1.20.2+0.1M1.2^{+0.1}_{-0.2} M_\odot to 2.00.3+0.3M2.0^{+0.3}_{-0.3} M_\odot. We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 MM_\odot. We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above 60M\sim 60 M_\odot. The rate of BBH mergers is observed to increase with redshift at a rate proportional to (1+z)κ(1+z)^{\kappa} with κ=2.91.8+1.7\kappa = 2.9^{+1.7}_{-1.8} for z1z\lesssim 1. Observed black hole spins are small, with half of spin magnitudes below χi0.25\chi_i \simeq 0.25. We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio

    Constraints on the cosmic expansion history from GWTC-3

    Get PDF
    We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter H(z)H(z), including its current value, the Hubble constant H0H_0. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z)H(z). The source mass distribution displays a peak around 34M34\, {\rm M_\odot}, followed by a drop-off. Assuming this mass scale does not evolve with redshift results in a H(z)H(z) measurement, yielding H0=687+12kms1Mpc1H_0=68^{+12}_{-7} {\rm km\,s^{-1}\,Mpc^{-1}} (68%68\% credible interval) when combined with the H0H_0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0H_0 estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8kms1Mpc1H_0=68^{+8}_{-6} {\rm km\,s^{-1}\,Mpc^{-1}} with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent H0H_0 studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0H_0) is the well-localized event GW190814

    Diving below the spin-down limit:constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

    Get PDF
    We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency. We find no signal, however, and report our upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of two and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is limited to less than about 3 x 10⁻⁵, which is the third best constraint for any young pulsar

    Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs

    Get PDF
    We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95\% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from Fα,Θ<(0.0137.6)×108ergcm2s1Hz1,F_{\alpha, \Theta} < {\rm (0.013 - 7.6)} \times 10^{-8} {\rm erg \, cm^{-2} \, s^{-1} \, Hz^{-1}}, and on the (normalized) gravitational-wave energy density spectrum from extended sources, ranging from Ωα,Θ<(0.579.3)×109sr1\Omega_{\alpha, \Theta} < {\rm (0.57 - 9.3)} \times 10^{-9} \, {\rm sr^{-1}}, depending on direction (Θ\Theta) and spectral index (α\alpha). These limits improve upon previous limits by factors of 2.93.52.9 - 3.5. We also set 95\% confidence level upper limits on the frequency-dependent strain amplitudes of quasimonochromatic gravitational waves coming from three interesting targets, Scorpius X-1, SN 1987A and the Galactic Center, with best upper limits range from h0<(1.72.1)×1025,h_0 < {\rm (1.7-2.1)} \times 10^{-25}, a factor of 2.0\geq 2.0 improvement compared to previous stochastic radiometer searches.Comment: 23 Pages, 9 Figure

    Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data

    Get PDF
    We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band [10,2000] Hz[10,2000]\rm~Hz have been used. No significant detection was found and 95%\% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6×10267.6\times 10^{-26} at 142 Hz\simeq 142\rm~Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.Comment: 25 pages, 5 figure
    corecore