44 research outputs found

    Mutual inhibition through hybrid oligomer formation of daptomycin and the semisynthetic lipopeptide antibiotic CB-182,462

    Get PDF
    The final publication is available at Elsevier via http://doi.org/10.1016/j.bbamem.2012.10.008 © 2013. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Daptomycin is a clinically important lipopeptide antibiotic that kills Gram-positive bacteria through membrane depolarization. Its activity requires calcium and the presence of phosphatidylglycerol in the target membrane. Calcium and phosphatidylglycerol also promote the formation of daptomycin oligomers, which have been assumed but not proven to be required for the bactericidal effect. Daptomycin shares substantial structural similarity with another lipopeptide antibiotic, A54145; the two have identical amino acid residues in 5 out of 13 positions and similar ones in 4 more positions. We here examined whether these conserved residues are sufficient for oligomer formation. To this end, we used fluorescence energy transfer and excimer fluorescence to detect hybrid oligomers of daptomycin and CB-182,462, a semisynthetic derivative of A54145. Mixtures of the two compounds indeed produced hybrid oligomers, but at the same time displayed a significantly less than additive antibacterial activity against Bacillus subtilis. The existence of functionally impaired oligomers indicates that oligomer formation is indeed important for antibacterial function. However, it also shows that oligomerization is not sufficient; once formed, the oligomers must take another step in order to acquire antibacterial activity. Thus, the amino acid residues shared between daptomycin and CB-182,462 suffice for formation of the oligomer, but not for its subsequent activation.This work was supported by a CHRP grant from NSERC and CIHR (M. Palmer and S. Taylor), by Yeshiva University (Evan Mintzer) and by a Henry Kressel scholarship (Nasim Tishbi)

    Two successive calcium-dependent transitions mediate membrane binding and oligomerization of daptomycin and the related antibiotic A54145

    Get PDF
    The final publication is available at Elsevier via http://doi.org/10.1016/j.bbamem.2016.05.020 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Daptomycin and A54145 are homologous lipopeptide antibiotics that permeabilize the cell membranes of Gram-positive bacteria. Membrane permeabilization depends on the presence of both phosphatidylglycerol (PG) and calcium, and it involves the formation of oligomeric transmembrane pores that consist of approximately 6-8 subunits. We here show that each lipopeptide molecule binds two calcium ions in separable, successive steps. The first calcium ion causes the lipopeptide molecule to bind to the target membrane, and likely to form a loosely associated oligomer. Higher calcium concentrations induce binding of a second ion, which produces the more tightly associated and more deeply membrane-inserted final, functional form of the oligomer. Both calcium dependent steps are accompanied by fluorescence signals that indicate transition of specific amino acid residues into less polar environments, suggestive of insertion into the target membrane. Our findings agree with the earlier observation that two of the four acidic amino acid residues in the daptomycin molecule are essential for antibacterial activity. (C) 2016 Elsevier B.V. All rights reserved.This study was supported by operating grants by NSERC to Scott Taylor (155283-2012) and Michael Palmer (250265-2013)

    Cardiolipin Prevents Membrane Translocation and Permeabilization by Daptomycin

    Get PDF
    This research was originally published in Journal of Biological Chemistry. Zhang, T., Muraih, J. K., Tishbi, N., Herskowitz, J., Victor, R. L., Silverman, J., … Mintzer, E. (2014). Cardiolipin Prevents Membrane Translocation and Permeabilization by Daptomycin. Journal of Biological Chemistry, 289(17), 11584–11591. © the American Society for Biochemistry and Molecular Biology." Available here: https://doi.org/10.1074/jbc.M114.554444Daptomycin is an acidic lipopeptide antibiotic that, in the presence of calcium, forms oligomeric pores on membranes containing phosphatidylglycerol. It is clinically used against various Gram-positive bacteria such as Staphylococcus aureus and Enterococcus species. Genetic studies have indicated that an increased content of cardiolipin in the bacterial membrane may contribute to bacterial resistance against the drug. Here, we used a liposome model to demonstrate that cardiolipin directly inhibits membrane permeabilization by daptomycin. When cardiolipin is added at molar fractions of 10 or 20% to membranes containing phosphatidylglycerol, daptomycin no longer forms pores or translocates to the inner membrane leaflet. Under the same conditions, daptomycin continues to form oligomers; however, these oligomers contain only close to four subunits, which is approximately half as many as observed on membranes without cardiolipin. The collective findings lead us to propose that a daptomycin pore consists of two aligned tetramers in opposite leaflets and that cardiolipin prevents the translocation of tetramers to the inner leaflet, thereby forestalling the formation of complete, octameric pores. Our findings suggest a possible mechanism by which cardiolipin may mediate resistance to daptomycin, and they provide new insights into the action mode of this important antibiotic

    Psychosocial Characteristics and Pain Burden of Patients With Suspected Sphincter of Oddi Dysfunction in the EPISOD Multicenter Trial

    Get PDF
    Patients with several painful functional gastrointestinal disorders (FGIDs) are reported to have a high prevalence of psychosocial disturbance. These aspects have not been studied extensively in patients with suspected Sphincter of Oddi dysfunction (SOD)

    Challenges in planning and initiating a randomized clinical study of sphincter of Oddi dysfunction

    Get PDF
    Sphincter of Oddi dysfunction (SOD) is a controversial topic, especially in patients with no objective findings on laboratory or imaging studies (SOD type III). The value of ERCP manometry with sphincterotomy is unproven and carries significant risks

    Can patient and pain characteristics predict manometric sphincter of Oddi dysfunction in patients with clinically suspected sphincter of Oddi dysfunction?

    Get PDF
    Biliopancreatic-type postcholecystectomy pain, without significant abnormalities on imaging and laboratory test results, has been categorized as “suspected” sphincter of Oddi dysfunction (SOD) type III. Clinical predictors of “manometric” SOD are important to avoid unnecessary ERCP, but are unknown

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images

    Get PDF
    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease
    corecore